7 research outputs found

    Machine learning for syndromic surveillance using veterinary necropsy reports.

    No full text
    The use of natural language data for animal population surveillance represents a valuable opportunity to gather information about potential disease outbreaks, emerging zoonotic diseases, or bioterrorism threats. In this study, we evaluate machine learning methods for conducting syndromic surveillance using free-text veterinary necropsy reports. We train a system to detect if a necropsy report from the Wisconsin Veterinary Diagnostic Laboratory contains evidence of gastrointestinal, respiratory, or urinary pathology. We evaluate the performance of several machine learning algorithms including deep learning with a long short-term memory network. Although no single algorithm was superior, random forest using feature vectors of TF-IDF statistics ranked among the top-performing models with F1 scores of 0.923 (gastrointestinal), 0.960 (respiratory), and 0.888 (urinary). This model was applied to over 33,000 necropsy reports and was used to describe temporal and spatial features of diseases within a 14-year period, exposing epidemiological trends and detecting a potential focus of gastrointestinal disease from a single submitting producer in the fall of 2016

    Assessment of the ability of Aedes species mosquitoes to transmit feline Mycoplasma haemofelis and Candidatus Mycoplasma haemominutum.

    No full text
    Objectives The objective of this study was to evaluate wild-caught mosquitoes for evidence of hemotropic Mycoplasma species DNA and to determine whether the feline hemoplasmas, Mycoplasma haemofelis (Mhf) and Candidatus Mycoplasma haemominutum (Mhm), can be transmitted by Aedes aegypti mosquitoes in a laboratory setting. Methods Wild-caught mosquito pools (50 mosquitoes per pool, 84 pools) utilized in routine public health department disease surveillance programs were tested for hemotropic Mycoplasma species DNA using PCR with primers designed to amplify all known hemoplasmas. Additionally, mosquitoes were trapped in the vicinity of known feral cat colonies, pooled (50 mosquitoes per pool) and tested (84 pools). Purpose-bred cats housed in a research facility were infected with Mhf or Mhm and then colonized laboratory A aegypti were fed upon the bacteremic cats. After a 7 day incubation period, mosquitoes previously fed on infected cats were allowed to feed again on naive cats, which were monitored for bacteremia for 10 weeks. Results Mycoplasma wenyonii DNA was confirmed in one wild-caught mosquito pool by DNA sequencing. While 7% of cats tested in feral colonies were hemoplasma positive, none of the mosquitoes trapped near colonies were positive. Hemoplasma DNA was amplified from A aegypti by PCR immediately after the infectious blood meal, but DNA was not detected at 7 and 14 days after feeding. Although evidence for uptake of organisms existed, hemoplasma DNA was not amplified from the experimentally infested cats in the 10 week observation period. Conclusions and relevance While wild-caught mosquitoes contained hemoplasma DNA and laboratory reared A aegypti mosquitoes take up hemoplasmas during the blood meal, there was no evidence of biologic transmission in this model

    Pathology in Practice

    No full text

    Prevalence of select vector-borne disease agents in owned dogs of Ghana

    No full text
    Ticks, sera and ethylenediaminetetraacetic acid (EDTA) blood were collected from dogs evaluated at the Amakom Veterinary Clinic in Kumasi, Ghana. Sera were evaluated for Dirofilaria immitis antigen and antibodies against Borrelia burgdorferi, Anaplasma phagocytophilum and Ehrlichia canis. Conventional polymerase chain reaction assays designed to amplify the deoxyribonucleic acid (DNA) ofEhrlichia spp. or Anaplasma spp. or Neorickettsia spp. or Wolbachia spp., Babesia spp., Rickettsia spp., Hepatozoon spp., Bartonella spp. and the haemoplasmas were performed on DNA extracted from EDTA blood and all positive amplicons were sequenced. This small survey shows that the following vector-borne pathogens are present in urban Ghanian dogs: Ehrlichia canis, Hepatozoon canis,Dirofilaria immitis and Anaplasma platys. Bartonella henselae was isolated from ticks but not from the dogs

    Supplemental Material, DS2_VET_10.1177_0300985818759771 - Congenital Ocular Abnormalities in Free-Ranging White-Tailed Deer

    No full text
    <p>Supplemental Material, DS2_VET_10.1177_0300985818759771 for Congenital Ocular Abnormalities in Free-Ranging White-Tailed Deer by Lorelei L. Clarke, Kevin D. Niedringhaus, K. Paige Carmichael, M. Kevin Keel, and Heather Fenton in Veterinary Pathology</p
    corecore