5,456 research outputs found
Metformin in polycystic ovary syndrome: systematic review and meta-analysis
The original publication may be found at www.bmj.comObjective To assess the effectiveness of metformin in improving clinical and biochemical features of polycystic ovary syndrome. Design Systematic review and meta-analysis. Data sources Randomised controlled trials that investigated the effect of metformin compared with either placebo or no treatment, or compared with an ovulation induction agent. Selection of studies 13 trials were included for analysis, including 543 women with polycystic ovary syndrome that was defined by using biochemical or ultrasound evidence. Main outcome measure Pregnancy and ovulation rates. Secondary outcomes of clinical and biochemical features of polycystic ovary syndrome. Results Meta-analysis showed that metformin is effective in achieving ovulation in women with polycystic ovary syndrome, with odds ratios of 3.88 (95% confidence interval 2.25 to 6.69) for metformin compared with placebo and 4.41 (2.37 to 8.22) for metformin and clomifene compared with clomifene alone. An analysis of pregnancy rates shows a significant treatment effect for metformin and clomifene (odds ratio 4.40, 1.96 to 9.85). Metformin has an effect in reducing fasting insulin concentrations, blood pressure, and low density lipoprotein cholesterol. We found no evidence of any effect on body mass index or waist:hip ratio. Metformin was associated with a higher incidence of nausea, vomiting, and other gastrointestinal disturbance. Conclusions Metformin is an effective treatment for anovulation in women with polycystic ovary syndrome. Its choice as a first line agent seems justified, and there is some evidence of benefit on variables of the metabolic syndrome. No data are available regarding the safety of metformin in long term use in young women and only limited data on its safety in early pregnancy. It should be used as an adjuvant to general lifestyle improvements and not as a replacement for increased exercise and improved diet.Jonathan M Lord, Ingrid H K Flight, Robert J Norma
Linear oscillations of a compressible hemispherical bubble on a solid substrate
The linear natural and forced oscillations of a hemispherical bubble on a
solid substrate are under theoretical consideration. The contact line dynamics
is taken into account with the Hocking condition, which eventually leads to
interaction of the shape and volume oscillations. Resonant phenomena, mostly
pronounced for the bubble with the fixed contact line or with the fixed contact
angle, are found out. The limiting case of weakly compressible bubble is
studied. The general criterion identifying whether the compressibility of a
bubble can be neglected is obtained.Comment: new slightly extended version with some minor changes, added journal
reference and DOI information; 12 pages, 8 figures, published in Physics of
Fluid
Quantum Reciprocity Conjecture for the Non-Equilibrium Steady State
By considering the lack of history dependence in the non-equilibrium steady
state of a quantum system we are led to conjecture that in such a system, there
is a set of quantum mechanical observables whose retarded response functions
are insensitive to the arrow of time, and which consequently satisfy a quantum
analog of the Onsager reciprocity relations. Systems which satisfy this
conjecture can be described by an effective Free energy functional. We
demonstrate that the conjecture holds in a resonant level model of a multi-lead
quantum dot.Comment: References revised to take account of related work on Onsager
reciprocity in mesoscopics by Christen, and in hydrodynamics by Mclennan,
Dufty and Rub
Density functional theory study of the nematic-isotropic transition in an hybrid cell
We have employed the Density Functional Theory formalism to investigate the
nematic-isotropic capillary transitions of a nematogen confined by walls that
favor antagonist orientations to the liquid crystal molecules (hybrid cell). We
analyse the behavior of the capillary transition as a function of the
fluid-substrate interactions and the pore width. In addition to the usual
capillary transition between isotropic-like to nematic-like states, we find
that this transition can be suppressed when one substrate is wet by the
isotropic phase and the other by the nematic phase. Under this condition the
system presents interface-like states which allow to continuously transform the
nematic-like phase to the isotropic-like phase without undergoing a phase
transition. Two different mechanisms for the disappearance of the capillary
transition are identified. When the director of the nematic-like state is
homogeneously planar-anchored with respect to the substrates, the capillary
transition ends up in a critical point. This scenario is analogous to the
observed in Ising models when confined in slit pores with opposing surface
fields which have critical wetting transitions. When the nematic-like state has
a linearly distorted director field, the capillary transition continuously
transforms in a transition between two nematic-like states.Comment: 31 pages, 10 figures, submitted to J. Chem. Phy
Capillary-gravity wave resistance in ordinary and magnetic fluids
Wave resistance is the drag force associated to the emission of waves by a
moving disturbance at a fluid free surface. In the case of capillary-gravity
waves it undergoes a transition from zero to a finite value as the speed of the
disturbance is increased. For the first time an experiment is designed in order
to obtain the wave resistance as a function of speed. The effect of viscosity
is explored, and a magnetic fluid is used to extend the available range of
critical speeds. The threshold values are in good agreement with the proposed
theory. Contrary to the theoretical model, however, the measured wave
resistance reveals a non monotonic speed dependence after the threshold.Comment: 12 pages, 4 figures, 1 table, submitted to Physical Review Letter
The effect of pressure on statics, dynamics and stability of multielectron bubbles
The effect of pressure and negative pressure on the modes of oscillation of a
multi-electron bubble in liquid helium is calculated. Already at low pressures
of the order of 10-100 mbar, these effects are found to significantly modify
the frequencies of oscillation of the bubble. Stabilization of the bubble is
shown to occur in the presence of a small negative pressure, which expands the
bubble radius. Above a threshold negative pressure, the bubble is unstable.Comment: 4 pages, 2 figures, accepted for publication in Physical Review
Letter
Onset of Wave Drag due to Generation of Capillary-Gravity Waves by a Moving Object as a Critical Phenomenon
The onset of the {\em wave resistance}, via generation of capillary gravity
waves, of a small object moving with velocity , is investigated
experimentally. Due to the existence of a minimum phase velocity for
surface waves, the problem is similar to the generation of rotons in superfluid
helium near their minimum. In both cases waves or rotons are produced at
due to {\em Cherenkov radiation}. We find that the transition to the
wave drag state is continuous: in the vicinity of the bifurcation the wave
resistance force is proportional to for various fluids.Comment: 4 pages, 7 figure
Influence of roughness on ZDDP tribofilm formation in boundary lubricated fretting
Influence of initial surface topography on tribofilm formation in ZDDP lubricated contact was analysed. A small displacement fretting tests with sinusoidal motion were carried out in classical sphere/plane configuration. A range of surfaces with different initial roughness were prepared by milling and grinding processes. Tests were carried out using variable displacement method where amplitude of imposed displacement was gradually increased after every 1000 cycles from 2 to 30 ”m. The surfaces after tribological tests were measured by interferometric profiler. Main findings confirm that initial roughness has a significant influence on antiwear tribofilm formation in boundary lubricated contact. Tribofilm form faster and require less energy to activate in case of rough surface obtained by milling process than in case of smooth grinded surface. However, in contact lubricated by ZDDP additive a significant transfer of material occurred from plane to sphere specimen
Electric field inside a "Rossky cavity" in uniformly polarized water
Electric field produced inside a solute by a uniformly polarized liquid is
strongly affected by dipolar polarization of the liquid at the interface. We
show, by numerical simulations, that the electric "cavity" field inside a
hydrated non-polar solute does not follow the predictions of standard Maxwell's
electrostatics of dielectrics. Instead, the field inside the solute tends, with
increasing solute size, to the limit predicted by the Lorentz virtual cavity.
The standard paradigm fails because of its reliance on the surface charge
density at the dielectric interface determined by the boundary conditions of
the Maxwell dielectric. The interface of a polar liquid instead carries a
preferential in-plane orientation of the surface dipoles thus producing
virtually no surface charge. The resulting boundary conditions for
electrostatic problems differ from the traditional recipes, affecting the
microscopic and macroscopic fields based on them. We show that relatively small
differences in cavity fields propagate into significant differences in the
dielectric constant of an ideal mixture. The slope of the dielectric increment
of the mixture versus the solute concentration depends strongly on which
polarization scenario at the interface is realized. A much steeper slope found
in the case of Lorentz polarization also implies a higher free energy penalty
for polarizing such mixtures.Comment: 9 pages, 8 figure
Periodic magnetorotational dynamo action as a prototype of nonlinear magnetic field generation in shear flows
The nature of dynamo action in shear flows prone to magnetohydrodynamic
instabilities is investigated using the magnetorotational dynamo in Keplerian
shear flow as a prototype problem. Using direct numerical simulations and
Newton's method, we compute an exact time-periodic magnetorotational dynamo
solution to the three-dimensional dissipative incompressible
magnetohydrodynamic equations with rotation and shear. We discuss the physical
mechanism behind the cycle and show that it results from a combination of
linear and nonlinear interactions between a large-scale axisymmetric toroidal
magnetic field and non-axisymmetric perturbations amplified by the
magnetorotational instability. We demonstrate that this large scale dynamo
mechanism is overall intrinsically nonlinear and not reducible to the standard
mean-field dynamo formalism. Our results therefore provide clear evidence for a
generic nonlinear generation mechanism of time-dependent coherent large-scale
magnetic fields in shear flows and call for new theoretical dynamo models.
These findings may offer important clues to understand the transitional and
statistical properties of subcritical magnetorotational turbulence.Comment: 10 pages, 6 figures, accepted for publication in Physical Review
- âŠ