152 research outputs found
T-bet controls intestinal mucosa immune responses via repression of type 2 innate lymphoid cell function
Innate lymphoid cells (ILCs) play an important role in regulating immune responses atmucosal surfaces. The transcription factor T-bet is crucial for the function of ILC1s andNCR+ ILC3s and constitutive deletion of T-bet prevents the development of thesesubsets. Lack of T-bet in the absence of an adaptive immune system, microbiotadependent colitis occurs due to aberrant ILC3 responses, thus T-bet expression in theinnate immune system has been considered to dampen pathogenic immune responses.Here we show that T-bet plays an unexpected role in negatively regulating innate type 2responses, in the context of an otherwise intact immune system. Selective loss of T-betin ILCs leads to the expansion and increased activity of ILC2s, which has a functionallyimportant impact on mucosal immunity, including enhanced protection from Trichinellaspiralis infection and inflammatory colitis. Mechanistically, we show that T-bet controlsthe intestinal ILC pool through regulation of IL7 receptor signalling. These datademonstrate that T-bet expression in ILCs acts as the key transcriptional checkpoint in regulating pathogenic versus protective mucosal immune responses, which hassignificant implications for the understanding of the pathogenesis of inflammatorybowel diseases and intestinal infections
Fragmentation and Multifragmentation of 10.6A GeV Gold Nuclei
We present the results of a study performed on the interactions of 10.6A GeV
gold nuclei in nuclear emulsions. In a minimum bias sample of 1311 interac-
tions, 5260 helium nuclei and 2622 heavy fragments were observed as Au projec-
tile fragments. The experimental data are analyzed with particular emphasis of
target separation interactions in emulsions and study of criticalexponents.
Multiplicity distributions of the fast-moving projectile fragments are inves-
tigated. Charged fragment moments, conditional moments as well as two and three
-body asymmetries of the fast moving projectile particles are determined in
terms of the total charge remaining bound in the multiply charged projectile
fragments. Some differences in the average yields of helium nuclei and heavier
fragments are observed, which may be attributed to a target effect. However,
two and three-body asymmetries and conditional moments indicate that the
breakup mechanism of the projectile seems to be independent of target mass. We
looked for evidence of critical point observable in finite nuclei by study the
resulting charged fragments distributions. We have obtained the values for the
critical exponents gamma, beta and tau and compare our results with those at
lower energy experiment (1.0A GeV data). The values suggest that a phase
transition like behavior, is observed.Comment: latex, revtex, 28 pages, 12 figures, 3tables, submitted to Europysics
Journal
Reductions in grassland species evenness increase dicot seedling invasion and spittle bug infestation
Search for continuous gravitational waves from neutron stars in globular cluster NGC 6544
We describe a directed search for continuous gravitational waves in data from the sixth initial LIGO science run. The target was the nearby globular cluster NGC 6544 at a distance of ≈2.7 kpc. The search covered a broad band of frequencies along with first and second frequency derivatives for a fixed sky position. The search coherently integrated data from the two LIGO interferometers over a time span of 9.2 days using the matched-filtering F-statistic. We found no gravitational-wave signals and set 95% confidence upper limits as stringent as 6.0×10-25 on intrinsic strain and 8.5×10-6 on fiducial ellipticity. These values beat the indirect limits from energy conservation for stars with characteristic spin-down ages older than 300 years and are within the range of theoretical predictions for possible neutron-star ellipticities. An important feature of this search was use of a barycentric resampling algorithm which substantially reduced computational cost; this method is used extensively in searches of Advanced LIGO and Virgo detector data. © 2017 American Physical Society
Testing the tripartite model in young adolescents: Is hyperarousal specific for anxiety and not depression?
Search for high-energy neutrinos from gravitational wave event GW151226 and candidate LVT151012 with ANTARES and IceCube
The Advanced LIGO observatories detected gravitational waves from two binary black hole mergers during their first observation run (O1). We present a high-energy neutrino follow-up search for the second gravitational wave event, GW151226, as well as for gravitational wave candidate LVT151012. We find two and four neutrino candidates detected by IceCube, and one and zero detected by Antares, within ±500 s around the respective gravitational wave signals, consistent with the expected background rate. None of these neutrino candidates are found to be directionally coincident with GW151226 or LVT151012. We use nondetection to constrain isotropic-equivalent high-energy neutrino emission from GW151226, adopting the GW event's 3D localization, to less than 2×1051-2×1054 erg. © 2017 American Physical Society
First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data
Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signal-to-noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have been developed, allowing a fully coherent search for gravitational waves from known pulsars over a fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of 11 pulsars using data from Advanced LIGO's first observing run. Although we have found several initial outliers, further studies show no significant evidence for the presence of a gravitational wave signal. Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for the first time. For an additional 3 targets, the median upper limit across the search bands is below the spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried out so far. © 2017 American Physical Society
- …
