639 research outputs found

    Folding-competent and folding-defective forms of Ricin A chain have different fates following retrotranslocation from the endoplasmic reticulum

    Get PDF
    We report that a toxic polypeptide retaining the potential to refold upon dislocation from the endoplasmic reticulum (ER) to the cytosol (ricin A chain; RTA) and a misfolded version that cannot (termed RTAĪ”), follow ER-associated degradation (ERAD) pathways in Saccharomyces cerevisiae that substantially diverge in the cytosol. Both polypeptides are dislocated in a step mediated by the transmembrane Hrd1p ubiquitin ligase complex and subsequently degraded. Canonical polyubiquitylation is not a prerequisite for this interaction because a catalytically inactive Hrd1p E3 ubiquitin ligase retains the ability to retrotranslocate RTA, and variants lacking one or both endogenous lysyl residues also require the Hrd1p complex. In the case of native RTA, we established that dislocation also depends on other components of the classical ERAD-L pathway as well as an ongoing ERā€“Golgi transport. However, the dislocation pathways deviate strikingly upon entry into the cytosol. Here, the CDC48 complex is required only for RTAĪ”, although the involvement of individual ATPases (Rpt proteins) in the 19S regulatory particle (RP) of the proteasome, and the 20S catalytic chamber itself, is very different for the two RTA variants. We conclude that cytosolic ERAD components, particularly the proteasome RP, can discriminate between structural features of the same substrate

    The TH1 cell lineage-determining transcription factor T-bet suppresses TH2 gene expression by redistributing GATA3 away from TH2 genes

    Get PDF
    Lineage-determining transcription factors (LD-TFs) drive the differentiation of progenitor cells into a specific lineage. In CD4+ T cells, T-bet dictates differentiation of the TH1 lineage, whereas GATA3 drives differentiation of the alternative TH2 lineage. However, LD-TFs, including T-bet and GATA3, are frequently co-expressed but how this affects LD-TF function is not known. By expressing T-bet and GATA3 separately or together in mouse T cells, we show that T-bet sequesters GATA3 at its target sites, thereby removing GATA3 from TH2 genes. This redistribution of GATA3 is independent of GATA3 DNA binding activity and is instead mediated by the T-bet DNA binding domain, which interacts with the GATA3 DNA binding domain and changes GATA3ā€²s sequence binding preference. This mechanism allows T-bet to drive the TH1 gene expression program in the presence of GATA3. We propose that redistribution of one LD-TF by another may be a common mechanism that could explain how specific cell fate choices can be made even in the presence of other transcription factors driving alternative differentiation pathways

    CD90 is not constitutively expressed in functional innate lymphoid cells

    Get PDF
    Huge progress has been made in understanding the biology of innate lymphoid cells (ILC) by adopting several well-known concepts in T cell biology. As such, flow cytometry gating strategies and markers, such as CD90, have been applied to indentify ILC. Here, we report that most non-NK intestinal ILC have a high expression of CD90 as expected, but surprisingly a sub-population of cells exhibit low or even no expression of this marker. CD90-negative and CD90-low CD127+ ILC were present amongst all ILC subsets in the gut. The frequency of CD90-negative and CD90-low CD127+ ILC was dependent on stimulatory cues in vitro and enhanced by dysbiosis in vivo. CD90-negative and CD90-low CD127+ ILC were a potential source of IL-13, IFNĪ³ and IL-17A at steady state and upon dysbiosis- and dextran sulphate sodium-elicited colitis. Hence, this study reveals that, contrary to expectations, CD90 is not constitutively expressed by functional ILC in the gut

    Communicable Ulcerative Colitis Induced by T-bet Deficiency in the Innate Immune System

    Get PDF
    Inflammatory bowel disease (IBD) has been attributed to overexuberant host immunity or the emergence of harmful intestinal flora. The transcription factor T-bet orchestrates inflammatory genetic programs in both adaptive and innate immunity. We describe a profound and unexpected function for T-bet in influencing the behavior of host inflammatory activity and commensal bacteria. T-bet deficiency in the innate immune system results in spontaneous and communicable ulcerative colitis in the absence of adaptive immunity and increased susceptibility to colitis in immunologically intact hosts. T-bet controls the response of the mucosal immune system to commensal bacteria by regulating TNF-Ī± production in colonic dendritic cells, critical for colonic epithelial barrier maintenance. Loss of T-bet influences bacterial populations to become colitogenic, and this colitis is communicable to genetically intact hosts. These findings reveal a novel function for T-bet as a peacekeeper of host-commensal relationships and provide new perspectives on the pathophysiology of IBD

    A Dimension-Adaptive Multi-Index Monte Carlo Method Applied to a Model of a Heat Exchanger

    Full text link
    We present an adaptive version of the Multi-Index Monte Carlo method, introduced by Haji-Ali, Nobile and Tempone (2016), for simulating PDEs with coefficients that are random fields. A classical technique for sampling from these random fields is the Karhunen-Lo\`eve expansion. Our adaptive algorithm is based on the adaptive algorithm used in sparse grid cubature as introduced by Gerstner and Griebel (2003), and automatically chooses the number of terms needed in this expansion, as well as the required spatial discretizations of the PDE model. We apply the method to a simplified model of a heat exchanger with random insulator material, where the stochastic characteristics are modeled as a lognormal random field, and we show consistent computational savings

    Dendritic cell expression of the transcription factor T-bet regulates mast cell progenitor homing to mucosal tissue

    Get PDF
    The transcription factor T-bet was identified in CD4+ T cells, and it controls interferon Ī³ production and T helper type 1 cell differentiation. T-bet is expressed in certain other leukocytes, and we recently showed (Lord, G.M., R.M. Rao, H. Choe, B.M. Sullivan, A.H. Lichtman, F.W. Luscinskas, and L.H. Glimcher. 2005. Blood. 106:3432ā€“3439) that it regulates T cell trafficking. We examined whether T-bet influences homing of mast cell progenitors (MCp) to peripheral tissues. Surprisingly, we found that MCp homing to the lung or small intestine in T-betāˆ’/āˆ’ mice is reduced. This is reproduced in adhesion studies using bone marrowā€“derived MCs (BMMCs) from T-betāˆ’/āˆ’ mice, which showed diminished adhesion to mucosal addresin cellular adhesion moleculeā€“1 (MAdCAM-1) and vascular cell adhesion moleculeā€“1 (VCAM-1), endothelial ligands required for MCp intestinal homing. MCp, their precursors, and BMMCs do not express T-bet, suggesting that T-bet plays an indirect role in homing. However, adoptive transfer experiments revealed that T-bet expression by BM cells is required for MCp homing to the intestine. Furthermore, transfer of WT BM-derived dendritic cells (DCs) to T-betāˆ’/āˆ’ mice restores normal MCp intestinal homing in vivo and MCp adhesion to MAdCAM-1 and VCAM-1 in vitro. Nonetheless, T-betāˆ’/āˆ’ mice respond vigorously to intestinal infection with Trichinella spiralis, eliminating a role for T-bet in MC recruitment to sites of infection and their activation and function. Therefore, remarkably, T-bet expression by DCs indirectly controls MCp homing to mucosal tissues

    Exhausted CD4+ T Cells during Malaria Exhibit Reduced mTORc1 Activity Correlated with Loss of T-bet Expression

    Get PDF
    CD4<sup>+</sup> T cell functional inhibition (exhaustion) is a hallmark of malaria and correlates with impaired parasite control and infection chronicity. However, the mechanisms of CD4<sup>+</sup> T cell exhaustion are still poorly understood. In this study, we show that Ag-experienced (<i>Ag-exp</i>) CD4<sup>+</sup> T cell exhaustion during <i>Plasmodium yoelii</i> nonlethal infection occurs alongside the reduction in mammalian target of rapamycin (mTOR) activity and restriction in CD4<sup>+</sup> T cell glycolytic capacity. We demonstrate that the loss of glycolytic metabolism and mTOR activity within the exhausted <i>Ag-exp</i>CD4<sup>+</sup> T cell population during infection coincides with reduction in T-bet expression. T-bet was found to directly bind to and control the transcription of various mTOR and metabolism-related genes within effector CD4<sup>+</sup> T cells. Consistent with this, <i>Ag-exp</i>Th1 cells exhibited significantly higher and sustained mTOR activity than effector T-bet- (non-Th1) <i>Ag-exp</i>T cells throughout the course of malaria. We identified mTOR to be redundant for sustaining T-bet expression in activated Th1 cells, whereas mTOR was necessary but not sufficient for maintaining IFN-γ production by Th1 cells. Immunotherapy targeting PD-1, CTLA-4, and IL-27 blocked CD4<sup>+</sup> T cell exhaustion during malaria infection and was associated with elevated T-bet expression and a concomitant increased CD4<sup>+</sup> T cell glycolytic metabolism. Collectively, our data suggest that mTOR activity is linked to T-bet in <i>Ag-exp</i>CD4<sup>+</sup> T cells but that reduction in mTOR activity may not directly underpin <i>Ag-exp</i>Th1 cell loss and exhaustion during malaria infection. These data have implications for therapeutic reactivation of exhausted CD4<sup>+</sup> T cells during malaria infection and other chronic conditions

    Cyclin-dependent kinase 9 as a potential target for anti-TNF resistant inflammatory bowel disease

    Get PDF
    BACKGROUND AND AIMS: Resistance to single cytokine blockade, namely anti-TNF therapy, is a growing concern for patients with inflammatory bowel disease (IBD). The transcription factor T-bet is a critical regulator of intestinal homeostasis, is genetically linked to mucosal inflammation and controls the expression of multiples genes such as the pro-inflammatory cytokines IFN-Ī³ and TNF. Inhibiting T-bet may therefore offer a more attractive prospect for treating IBD but remains challenging to target therapeutically. In this study, we evaluate the effect of targeting the transactivation function of T-bet using inhibitors of P-TEFb (CDK9-cyclin T), a transcriptional elongation factor downstream of T-bet. METHODS: Using an adaptive immune-mediated colitis model, human colonic lymphocytes from IBD patients and multiple large clinical datasets, we investigate the effect of CDK9 inhibitors on cytokine production and gene expression in colonic CD4+ T cells and link these genetic modules to clinical response in patients with IBD. RESULTS: Systemic CDK9 inhibition led to histological improvement of immune-mediated colitis and was associated with targeted suppression of colonic CD4+ T cell-derived IFN-Ī³ and IL-17A. In colonic lymphocytes from IBD patients, CDK9 inhibition potently repressed genes responsible for pro-inflammatory signalling, and in particular genes regulated by T-bet. Remarkably, CDK9 inhibition targeted genes that were highly expressed in anti-TNF resistant IBD and that predicted non-response to anti-TNF therapy. CONCLUSION: Collectively, our findings reveal CDK9 as a potential target for anti-TNF resistant IBD, which has the potential for rapid translation to the clinic

    Optimal Self-Organization

    Full text link
    We present computational and analytical results indicating that systems of driven entities with repulsive interactions tend to reach an optimal state associated with minimal interaction and minimal dissipation. Using concepts from non-equilibrium thermodynamics and game theoretical ideas, we generalize this finding to an even wider class of self-organizing systems which have the ability to reach a state of maximal overall ``success''. This principle is expected to be relevant for driven systems in physics like sheared granular media, but it is also applicable to biological, social, and economic systems, for which only a limited number of quantitative principles are available yet.Comment: This is the detailled revised version of a preprint on ``Self-Organised Optimality'' (cond-mat/9903319). For related work see http://www.theo2.physik.uni-stuttgart.de/helbing.html and http://angel.elte.hu/~vicsek
    • ā€¦
    corecore