440 research outputs found

    The TH1 cell lineage-determining transcription factor T-bet suppresses TH2 gene expression by redistributing GATA3 away from TH2 genes

    Get PDF
    Lineage-determining transcription factors (LD-TFs) drive the differentiation of progenitor cells into a specific lineage. In CD4+ T cells, T-bet dictates differentiation of the TH1 lineage, whereas GATA3 drives differentiation of the alternative TH2 lineage. However, LD-TFs, including T-bet and GATA3, are frequently co-expressed but how this affects LD-TF function is not known. By expressing T-bet and GATA3 separately or together in mouse T cells, we show that T-bet sequesters GATA3 at its target sites, thereby removing GATA3 from TH2 genes. This redistribution of GATA3 is independent of GATA3 DNA binding activity and is instead mediated by the T-bet DNA binding domain, which interacts with the GATA3 DNA binding domain and changes GATA3′s sequence binding preference. This mechanism allows T-bet to drive the TH1 gene expression program in the presence of GATA3. We propose that redistribution of one LD-TF by another may be a common mechanism that could explain how specific cell fate choices can be made even in the presence of other transcription factors driving alternative differentiation pathways

    CD90 is not constitutively expressed in functional innate lymphoid cells

    Get PDF
    Huge progress has been made in understanding the biology of innate lymphoid cells (ILC) by adopting several well-known concepts in T cell biology. As such, flow cytometry gating strategies and markers, such as CD90, have been applied to indentify ILC. Here, we report that most non-NK intestinal ILC have a high expression of CD90 as expected, but surprisingly a sub-population of cells exhibit low or even no expression of this marker. CD90-negative and CD90-low CD127+ ILC were present amongst all ILC subsets in the gut. The frequency of CD90-negative and CD90-low CD127+ ILC was dependent on stimulatory cues in vitro and enhanced by dysbiosis in vivo. CD90-negative and CD90-low CD127+ ILC were a potential source of IL-13, IFNγ and IL-17A at steady state and upon dysbiosis- and dextran sulphate sodium-elicited colitis. Hence, this study reveals that, contrary to expectations, CD90 is not constitutively expressed by functional ILC in the gut

    Dendritic cell expression of the transcription factor T-bet regulates mast cell progenitor homing to mucosal tissue

    Get PDF
    The transcription factor T-bet was identified in CD4+ T cells, and it controls interferon γ production and T helper type 1 cell differentiation. T-bet is expressed in certain other leukocytes, and we recently showed (Lord, G.M., R.M. Rao, H. Choe, B.M. Sullivan, A.H. Lichtman, F.W. Luscinskas, and L.H. Glimcher. 2005. Blood. 106:3432–3439) that it regulates T cell trafficking. We examined whether T-bet influences homing of mast cell progenitors (MCp) to peripheral tissues. Surprisingly, we found that MCp homing to the lung or small intestine in T-bet−/− mice is reduced. This is reproduced in adhesion studies using bone marrow–derived MCs (BMMCs) from T-bet−/− mice, which showed diminished adhesion to mucosal addresin cellular adhesion molecule–1 (MAdCAM-1) and vascular cell adhesion molecule–1 (VCAM-1), endothelial ligands required for MCp intestinal homing. MCp, their precursors, and BMMCs do not express T-bet, suggesting that T-bet plays an indirect role in homing. However, adoptive transfer experiments revealed that T-bet expression by BM cells is required for MCp homing to the intestine. Furthermore, transfer of WT BM-derived dendritic cells (DCs) to T-bet−/− mice restores normal MCp intestinal homing in vivo and MCp adhesion to MAdCAM-1 and VCAM-1 in vitro. Nonetheless, T-bet−/− mice respond vigorously to intestinal infection with Trichinella spiralis, eliminating a role for T-bet in MC recruitment to sites of infection and their activation and function. Therefore, remarkably, T-bet expression by DCs indirectly controls MCp homing to mucosal tissues

    Exhausted CD4+ T Cells during Malaria Exhibit Reduced mTORc1 Activity Correlated with Loss of T-bet Expression

    Get PDF
    CD4<sup>+</sup> T cell functional inhibition (exhaustion) is a hallmark of malaria and correlates with impaired parasite control and infection chronicity. However, the mechanisms of CD4<sup>+</sup> T cell exhaustion are still poorly understood. In this study, we show that Ag-experienced (<i>Ag-exp</i>) CD4<sup>+</sup> T cell exhaustion during <i>Plasmodium yoelii</i> nonlethal infection occurs alongside the reduction in mammalian target of rapamycin (mTOR) activity and restriction in CD4<sup>+</sup> T cell glycolytic capacity. We demonstrate that the loss of glycolytic metabolism and mTOR activity within the exhausted <i>Ag-exp</i>CD4<sup>+</sup> T cell population during infection coincides with reduction in T-bet expression. T-bet was found to directly bind to and control the transcription of various mTOR and metabolism-related genes within effector CD4<sup>+</sup> T cells. Consistent with this, <i>Ag-exp</i>Th1 cells exhibited significantly higher and sustained mTOR activity than effector T-bet- (non-Th1) <i>Ag-exp</i>T cells throughout the course of malaria. We identified mTOR to be redundant for sustaining T-bet expression in activated Th1 cells, whereas mTOR was necessary but not sufficient for maintaining IFN-γ production by Th1 cells. Immunotherapy targeting PD-1, CTLA-4, and IL-27 blocked CD4<sup>+</sup> T cell exhaustion during malaria infection and was associated with elevated T-bet expression and a concomitant increased CD4<sup>+</sup> T cell glycolytic metabolism. Collectively, our data suggest that mTOR activity is linked to T-bet in <i>Ag-exp</i>CD4<sup>+</sup> T cells but that reduction in mTOR activity may not directly underpin <i>Ag-exp</i>Th1 cell loss and exhaustion during malaria infection. These data have implications for therapeutic reactivation of exhausted CD4<sup>+</sup> T cells during malaria infection and other chronic conditions

    Cyclin-dependent kinase 9 as a potential target for anti-TNF resistant inflammatory bowel disease

    Get PDF
    BACKGROUND AND AIMS: Resistance to single cytokine blockade, namely anti-TNF therapy, is a growing concern for patients with inflammatory bowel disease (IBD). The transcription factor T-bet is a critical regulator of intestinal homeostasis, is genetically linked to mucosal inflammation and controls the expression of multiples genes such as the pro-inflammatory cytokines IFN-γ and TNF. Inhibiting T-bet may therefore offer a more attractive prospect for treating IBD but remains challenging to target therapeutically. In this study, we evaluate the effect of targeting the transactivation function of T-bet using inhibitors of P-TEFb (CDK9-cyclin T), a transcriptional elongation factor downstream of T-bet. METHODS: Using an adaptive immune-mediated colitis model, human colonic lymphocytes from IBD patients and multiple large clinical datasets, we investigate the effect of CDK9 inhibitors on cytokine production and gene expression in colonic CD4+ T cells and link these genetic modules to clinical response in patients with IBD. RESULTS: Systemic CDK9 inhibition led to histological improvement of immune-mediated colitis and was associated with targeted suppression of colonic CD4+ T cell-derived IFN-γ and IL-17A. In colonic lymphocytes from IBD patients, CDK9 inhibition potently repressed genes responsible for pro-inflammatory signalling, and in particular genes regulated by T-bet. Remarkably, CDK9 inhibition targeted genes that were highly expressed in anti-TNF resistant IBD and that predicted non-response to anti-TNF therapy. CONCLUSION: Collectively, our findings reveal CDK9 as a potential target for anti-TNF resistant IBD, which has the potential for rapid translation to the clinic

    Optimal Self-Organization

    Full text link
    We present computational and analytical results indicating that systems of driven entities with repulsive interactions tend to reach an optimal state associated with minimal interaction and minimal dissipation. Using concepts from non-equilibrium thermodynamics and game theoretical ideas, we generalize this finding to an even wider class of self-organizing systems which have the ability to reach a state of maximal overall ``success''. This principle is expected to be relevant for driven systems in physics like sheared granular media, but it is also applicable to biological, social, and economic systems, for which only a limited number of quantitative principles are available yet.Comment: This is the detailled revised version of a preprint on ``Self-Organised Optimality'' (cond-mat/9903319). For related work see http://www.theo2.physik.uni-stuttgart.de/helbing.html and http://angel.elte.hu/~vicsek

    Relaxation of mitochondrial hyperfusion in the diabetic retina via N6-furfuryladenosine confers neuroprotection regardless of glycaemic status

    Get PDF
    The recovery of mitochondrial quality control (MQC) may bring innovative solutions for neuroprotection, while imposing a significant challenge given the need of holistic approaches to restore mitochondrial dynamics (fusion/fission) and turnover (mitophagy and biogenesis). In diabetic retinopathy, this is compounded by our lack of understanding of human retinal neurodegeneration, but also how MQC processes interact during disease progression. Here, we show that mitochondria hyperfusion is characteristic of retinal neurodegeneration in human and murine diabetes, blunting the homeostatic turnover of mitochondria and causing metabolic and neuro-inflammatory stress. By mimicking this mitochondrial remodelling in vitro, we ascertain that N6-furfuryladenosine enhances mitochondrial turnover and bioenergetics by relaxing hyperfusion in a controlled fashion. Oral administration of N6-furfuryladenosine enhances mitochondrial turnover in the diabetic mouse retina (Ins2Akita males), improving clinical correlates and conferring neuroprotection regardless of glycaemic status. Our findings provide translational insights for neuroprotection in the diabetic retina through the holistic recovery of MQC.</p

    Knowledge brokering: Exploring the process of transferring knowledge into action

    Get PDF
    There are many theories about knowledge transfer but there are few clear descriptions of knowledge transfer interventions or the processes they involve. This failure to characterise structure and process in proposed KT interventions is a major barrier to the design and implementation of evaluations of particular KT strategies. This study is designed to provide a detailed description of the processes involved in a knowledge transfer intervention and to develop and refine a useful model of the knowledge transfer process

    Regulation of Hepatic Triacylglycerol Metabolism by CGI-58 Does Not Require ATGL Co-activation

    Get PDF
    SummaryAdipose triglyceride lipase (ATGL) and comparative gene identification 58 (CGI-58) are critical regulators of triacylglycerol (TAG) turnover. CGI-58 is thought to regulate TAG mobilization by stimulating the enzymatic activity of ATGL. However, it is not known whether this coactivation function of CGI-58 occurs in vivo. Moreover, the phenotype of human CGI-58 mutations suggests ATGL-independent functions. Through direct comparison of mice with single or double deficiency of CGI-58 and ATGL, we show here that CGI-58 knockdown causes hepatic steatosis in both the presence and absence of ATGL. CGI-58 also regulates hepatic diacylglycerol (DAG) and inflammation in an ATGL-independent manner. Interestingly, ATGL deficiency, but not CGI-58 deficiency, results in suppression of the hepatic and adipose de novo lipogenic program. Collectively, these findings show that CGI-58 regulates hepatic neutral lipid storage and inflammation in the genetic absence of ATGL, demonstrating that mechanisms driving TAG lipolysis in hepatocytes differ significantly from those in adipocytes
    • …
    corecore