200 research outputs found

    Accurate orbit determination strategies for the tracking and data relay satellites

    Get PDF
    The National Aeronautics and Space Administration (NASA) has developed the Tracking and Data Relay Satellite (TDRS) System (TDRSS) for tracking and communications support of low Earth-orbiting satellites. TDRSS has the operational capability of providing 85% coverage for TDRSS-user spacecraft. TDRSS currently consists of five geosynchronous spacecraft and the White Sands Complex (WSC) at White Sands, New Mexico. The Bilateration Ranging Transponder System (BRTS) provides range and Doppler measurements for each TDRS. The ground-based BRTS transponders are tracked as if they were TDRSS-user spacecraft. Since the positions of the BRTS transponders are known, their radiometric tracking measurements can be used to provide a well-determined ephemeris for the TDRS spacecraft. For high-accuracy orbit determination of a TDRSS user, such as the Ocean Topography Experiment (TOPEX)/Poseidon spacecraft, high-accuracy TDRS orbits are required. This paper reports on successive refinements in improved techniques and procedures leading to more accurate TDRS orbit determination strategies using the Goddard Trajectory Determination System (GTDS). These strategies range from the standard operational solution using only the BRTS tracking measurements to a sophisticated iterative process involving several successive simultaneous solutions for multiple TDRSs and a TDRSS-user spacecraft. Results are presented for GTDS-generated TDRS ephemerides produced in simultaneous solutions with the TOPEX/Poseidon spacecraft. Strategies with different user spacecraft, as well as schemes for recovering accurate TDRS orbits following a TDRS maneuver, are also presented. In addition, a comprehensive assessment and evaluation of alternative strategies for TDRS orbit determination, excluding BRTS tracking measurements, are presented

    Nitrifying Microorganisms Linked to Biotransformation of Perfluoroalkyl Sulfonamido Precursors from Legacy Aqueous Film-Forming Foams

    Get PDF
    Drinking water supplies across the United States have been contaminated by firefighting and fire-training activities that use aqueous film-forming foams (AFFF) containing per- and polyfluoroalkyl substances (PFAS). Much of the AFFF is manufactured using electrochemical fluorination by 3M. Precursors with six perfluorinated carbons (C6) and non-fluorinated amine substituents make up approximately one-third of the PFAS in 3M AFFF. C6 precursors can be transformed through nitrification (microbial oxidation) of amine moieties into perfluorohexane sulfonate (PFHxS), a compound of regulatory concern. Here, we report biotransformation of the most abundant C6 sulfonamido precursors in 3M AFFF with available commercial standards (FHxSA, PFHxSAm, and PFHxSAmS) in microcosms representative of the groundwater/surface water boundary. Results show rapid (\u3c1 day) biosorption to living cells by precursors but slow biotransformation into PFHxS (1–100 pM day–1). The transformation pathway includes one or two nitrification steps and is supported by the detection of key intermediates using high-resolution mass spectrometry. Increasing nitrate concentrations and total abundance of nitrifying taxa occur in parallel with precursor biotransformation. Together, these data provide multiple lines of evidence supporting microbially limited biotransformation of C6 sulfonamido precursors involving ammonia-oxidizing archaea (Nitrososphaeria) and nitrite-oxidizing bacteria (Nitrospina). Further elucidation of interrelationships between precursor biotransformation and nitrogen cycling in ecosystems would help inform site remediation efforts

    BMC Psychol

    Get PDF
    Background Preschoolers regularly display disruptive behaviors in child care settings because they have not yet developed the social skills necessary to interact prosocially with others. Disruptive behaviors interfere with daily routines and can lead to conflict with peers and educators. We investigated the impact of a social skills training program led by childcare educators on children’s social behaviors and tested whether the impact varied according to the child’s sex and family socio-economic status. Methods Nineteen public Child Care Centers (CCC, n = 361 children) located in low socio-economic neighborhoods of Montreal, Canada, were randomized into one of two conditions: 1) intervention (n = 10 CCC; 185 children) or 2) wait list control (n = 9 CCC; 176 children). Educators rated children’s behaviors (i.e., disruptive and prosocial behaviors) before and after the intervention. Hierarchical linear mixed models were used to account for the nested structure of the data. Results At pre-intervention, no differences in disruptive and prosocial behaviors were observed between the experimental conditions. At post-intervention, we found a significant sex by intervention interaction (β intervention by sex = − 1.19, p = 0.04) indicating that girls in the intervention condition exhibited lower levels of disruptive behaviors compared to girls in the control condition (f2 effect size = − 0.15). There was no effect of the intervention for boys. Conclusions Girls may benefit more than boys from social skills training offered in the child care context. Studies with larger sample sizes and greater intervention intensity are needed to confirm the results

    b-bbar asymmetry in Z decays

    No full text
    • …
    corecore