1,316 research outputs found

    Accurate Noise Projection for Reduced Stochastic Epidemic Models

    Full text link
    We consider a stochastic Susceptible-Exposed-Infected-Recovered (SEIR) epidemiological model. Through the use of a normal form coordinate transform, we are able to analytically derive the stochastic center manifold along with the associated, reduced set of stochastic evolution equations. The transformation correctly projects both the dynamics and the noise onto the center manifold. Therefore, the solution of this reduced stochastic dynamical system yields excellent agreement, both in amplitude and phase, with the solution of the original stochastic system for a temporal scale that is orders of magnitude longer than the typical relaxation time. This new method allows for improved time series prediction of the number of infectious cases when modeling the spread of disease in a population. Numerical solutions of the fluctuations of the SEIR model are considered in the infinite population limit using a Langevin equation approach, as well as in a finite population simulated as a Markov process.Comment: 38 pages, 10 figures, new title, Final revision to appear in Chao

    Bounds on the mass and abundance of dark compact objects and black holes in dwarf spheroidal galaxy halos

    Get PDF
    We establish new dynamical constraints on the mass and abundance of compact objects in the halo of dwarf spheroidal galaxies. In order to preserve kinematically cold the second peak of the Ursa Minor dwarf spheroidal (UMi dSph) against gravitational scattering, we place upper limits on the density of compact objects as a function of their assumed mass. The mass of the dark matter constituents cannot be larger than 1000 solar masses at a halo density in UMi's core of 0.35 solar masses/pc^3. This constraint rules out a scenario in which dark halo cores are formed by two-body relaxation processes. Our bounds on the fraction of dark matter in compact objects with masses >3000 solar masses improve those based on dynamical arguments in the Galactic halo. In particular, objects with masses ∼105\sim 10^{5} solar masses can comprise no more than a halo mass fraction ∼0.01\sim 0.01. Better determinations of the velocity dispersion of old overdense regions in dSphs may result in more stringent constraints on the mass of halo objects. For illustration, if the preliminary value of 0.5 km/s for the secondary peak of UMi is confirmed, compact objects with masses above ∼100\sim 100 solar masses could be excluded from comprising all its dark matter halo.Comment: 6 pages, 2 figures, accepted for publication in ApJ Letter

    Switching barrier scaling near bifurcation points for non-Gaussian noise

    Get PDF
    We study noise-induced switching of a system close to bifurcation parameter values where the number of stable states changes. For non-Gaussian noise, the switching exponent, which gives the logarithm of the switching rate, displays a non-power-law dependence on the distance to the bifurcation point. This dependence is found for Poisson noise. Even weak additional Gaussian noise dominates switching sufficiently close to the bifurcation point, leading to a crossover in the behavior of the switching exponent

    Bacterial and archaeal specific-predation in the North Atlantic Basin

    Get PDF
    © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Seyler, L. M., Tuorto, S., McGuinness, L. R., Gong, D., & Kerkhof, L. J. Bacterial and archaeal specific-predation in the North Atlantic Basin. Frontiers in Marine Science, 6, (2019): 555, doi:10.3389/fmars.2019.00555.Stable isotope probing (SIP) was used to track prokaryotic and eukaryotic carbon uptake along a meridional transect (Long. 52°W) in the North Atlantic to assess if 13C-resource partitioning between bacteria and archaea and 13C-labeled eukaryotic predators could be detected. One-liter SIP microcosms were amended with 13C-acetate or 13C-urea and incubated for 48 h. Our data indicated archaea often outcompeted bacteria for 13C-urea while both archaea and bacteria could incorporate 13C-acetate. This 13C label could also be tracked into eukaryotic microbes. The largest number of 13C-labeled eukaryotic OTUs, and the greatest percentage of eukaryotic 13C signal, were observed in conjunction with both archaeal and bacterial 13C incorporation, suggesting that most eukaryotic predators do not distinguish between archaeal and bacterial prey. However, other 13C-eukaryotic OTUs were exclusively associated with either 13C-archaeal or 13C-bacterial OTUs. These archaeal-specific and bacterial-specific 13C-eukaryotic OTUs were related to known bactivorous predators including Ancyromonas, Amastigomonas, Cafeteria, and Caecitellus. Our SIP findings suggest both resource partitioning between bacteria and TACK (Thaumarchaeota, Aigarchaeota, Crenarchaeota, and Korarchaeota) archaea and selective predation by eukaryotic predators. Determining the equalizing mechanisms for co-existence in the marine environment can help map predator/prey interactions to better estimate carbon flow in the deep ocean.This research was made possible through the support of the U.S Global Ocean Carbon and Repeat Hydrography Program and NSF Ocean Technology and Interdisciplinary Program grant (#1131022) to LK

    Formation and fate of the born-again planetary nebula HuBi 1

    Full text link
    We present the first 3D radiation-hydrodynamic simulations on the formation and evolution of born-again planetary nebulae (PNe), with particular emphasis to the case of HuBi1, the inside-out PN. We use the extensively-tested GUACHO code to simulate the formation of HuBi1 adopting mass-loss and stellar wind terminal velocity estimates obtained from observations presented by our group. We found that, if the inner shell of HuBi1 was formed by an explosive very late thermal pulse (VLTP) ejecting material with velocities of ∼\sim300 km s−1^{-1}, the age of this structure is consistent with that of ≃\simeq200 yr derived from multi-epoch narrow-band imaging. Our simulations predict that, as a consequence of the dramatic reduction of the stellar wind velocity and photon ionizing flux during the VLTP, the velocity and pressure structure of the outer H-rich nebula are affected creating turbulent ionized structures surrounding the inner shell. These are indeed detected in Gran Telescopio Canarias MEGARA optical observations. Furthermore, we demonstrate that the current relatively low ionizing photon flux from the central star of HuBi1 is not able to completely ionize the inner shell, which favors previous suggestions that its excitation is dominated by shocks. Our simulations suggest that the kinetic energy of the H-poor ejecta of HuBi1 is at least 30 times that of the clumps and filaments in the evolved born-again PNe A30 and A78, making it a truly unique VLTP event.Comment: 9 pages, 10 figures, no tables; accepted to MNRA

    Male Meiosis as a Biomarker for Endo- to Ecodormancy Transition in Apricot

    Get PDF
    Dormancy is an adaptive strategy in plants to survive under unfavorable climatic conditions during winter. In temperate regions, most fruit trees need exposure to a certain period of low temperatures to overcome endodormancy. After endodormancy release, exposure to warm temperatures is needed to flower (ecodormancy). Chilling and heat requirements are genetically determined and, therefore, are specific for each species and cultivar. The lack of sufficient winter chilling can cause failures in flowering and fruiting, thereby compromising yield. Thus, the knowledge of the chilling and heat requirements is essential to optimize cultivar selection for different edaphoclimatic conditions. However, the lack of phenological or biological markers linked to the dormant and forcing periods makes it difficult to establish the end of endodormancy. This has led to indirect estimates that are usually not valid in different agroclimatic conditions. The increasing number of milder winters caused by climatic change and the continuous release of new cultivars emphasize the necessity of a proper biological marker linked to the endo- to ecodormancy transition for an accurate estimation of the agroclimatic requirements (AR) of each cultivar. In this work, male meiosis is evaluated as a biomarker to determine endodormancy release and to estimate both chilling and heat requirements in apricot. For this purpose, pollen development was characterized histochemically in 20 cultivars over 8 years, and the developmental stages were related to dormancy. Results were compared to three approaches that indirectly estimate the breaking of dormancy: an experimental methodology by evaluating bud growth in shoots collected periodically throughout the winter months and transferred to forcing chambers over 3 years, and two statistical approaches that relate seasonal temperatures and blooming dates in a series of 11–20 years by correlation and partial least square regression. The results disclose that male meiosis is a possible biomarker to determine the end of endodormancy and estimate AR in apricot. Copyright © 2022 Herrera, Lora, Fadón, Hedhly, Alonso, Hormaza and Rodrigo
    • …
    corecore