84 research outputs found

    Intermixed Time-Dependent Self-Focusing and Defocusing Nonlinearities in Polymer Solutions

    Get PDF
    [Image: see text] Low-power visible light can lead to spectacular nonlinear effects in soft-matter systems. The propagation of visible light through transparent solutions of certain polymers can experience either self-focusing or defocusing nonlinearity, depending on the solvent. We show how the self-focusing and defocusing responses can be captured by a nonlinear propagation model using local spatial and time-integrating responses. We realize a remarkable pattern formation in ternary solutions and model it assuming a linear combination of the self-focusing and defocusing nonlinearities in the constituent solvents. This versatile response of solutions to light irradiation may introduce a new approach for self-written waveguides and patterns

    Optically formed rubbery waveguide interconnects

    Get PDF

    Multiple glass transitions in star polymer mixtures: Insights from theory and simulations

    Full text link
    The glass transition in binary mixtures of star polymers is studied by mode coupling theory and extensive molecular dynamics computer simulations. In particular, we have explored vitrification in the parameter space of size asymmetry δ\delta and concentration ρ2\rho_2 of the small star polymers at fixed concentration of the large ones. Depending on the choice of parameters, three different glassy states are identified: a single glass of big polymers at low δ\delta and low ρ2\rho_2, a double glass at high δ\delta and low ρ2\rho_2, and a novel double glass at high ρ2\rho_2 and high δ\delta which is characterized by a strong localization of the small particles. At low δ\delta and high ρ2\rho_2 there is a competition between vitrification and phase separation. Centered in the (δ,ρ2)(\delta, \rho_2)-plane, a liquid lake shows up revealing reentrant glass formation. We compare the behavior of the dynamical density correlators with the predictions of the theory and find remarkable agreement between the two.Comment: 15 figures, to be published in Macromolecule

    Click Chemistry, A Powerful Tool for Pharmaceutical Sciences

    Full text link

    Dynamics and Rheology of Supramolecular Assemblies at Elevated Pressures5241

    No full text
    A methodology to investigate the linear viscoelastic properties of complex fluids at elevated pressures (up to 120 MPa) is presented. It is based on a dynamic light scattering (DLS) setup coupled with a stainless steel chamber, where the test sample is pressurized by means of an inert gas. The viscoelastic spectra are extracted through passive microrheology. We discuss an application to hydrogen-bonding motif 2,4-bis(2-ethylhexylureido)toluene (EHUT), which self-assembles into supramolecular structures (tubes and filaments) in apolar solvents dodecane and cyclohexane. High levels of pressure (roughly above 20 MPa) are found to slow down the terminal relaxation process; however, the increases in the entanglement plateau modulus and the associated persistence length are not significant. The concentration dependence of the plateau modulus, relaxation times (fast and slow), and correlation length is practically the same for all pressures and exhibits distinct power-law behavior in different regimes. Within the tube phase in dodecane, the relative viscosity increment is weakly enhanced with increasing pressure and reaches a plateau at about 60 MPa. In fact, depending on concentration, the application of pressure in the tube regime may lead to a transition from a viscous (unentangled) to a viscoelastic (partially entangled to well-entangled) solution. For well-entangled, long tubes, the extent of the plateau regime (ratio of high- to low-moduli crossover frequencies) increases with pressure. The collective information from these observations is summarized in a temperature–pressure state diagram. These findings provide ingredients for the formulation of a solid theoretical framework to better understand and exploit the role of pressure in the structure and dynamics of supramolecular polymers
    corecore