19 research outputs found

    Cartilage repair using hydrogels: a critical review of in vivo experimental designs

    Get PDF
    Prova tipográfica This review analyzes the outcomes and technical aspects of in vivo studies published in the past decade using gels and hydrogels for cartilage repair. Using PubMed search engine, original research publications during the period of 2002/01/01 to 2015/04/30 identifi ed 115 published papers. Of these, 3 studies failed to fi nd a statistically significant improvement of treatment group as compared to control and 18 studies did not clearly identify hyaline-like cartilage formation in the treated groups. The most frequent repaired lesion was the rabbit acute full thickness trochlear defect, using a scaff old combining a gel or hydrogel and other material. One third of the scaff olds were cell-free (35%) and the majority of the studies did not use growth factors (71%). The present review may constitute a useful tool in design of future studies, as limitations of study designs are pointed and results in terms of translation to human application is discussed.ARTICULATE project 623 (QREN-13/SI/2011-23189

    Seaweed polysaccharide-based hydrogels used for the regeneration of articular cartilage

    Get PDF
    This manuscript provides an overview of the in vitro and in vivo studies reported in the literature focusing on seaweed polysaccharides based hydrogels that have been proposed for applications in regenerative medicine, particularly, in the field of cartilage tissue engineering. For a better understanding of the main requisites for these specific applications, the main aspects of the native cartilage structure, as well as recognized diseases that affect this tissue are briefly described. Current available treatments are also presented to emphasize the need for alternative techniques. The following part of this review is centered on the description of the general characteristics of algae polysaccharides, as well as relevant properties required for designing hydrogels for cartilage tissue engineering purposes. An in-depth overview of the most well known seaweed polysaccharide, namely agarose, alginate, carrageenan and ulvan biopolymeric gels, that have been proposed for engineering cartilage is also provided. Finally, this review describes and summarizes the translational aspect for the clinical application of alternative systems emphasizing the importance of cryopreservation and the commercial products currently available for cartilage treatment.Authors report no declarations of interest. Authors thank the Portuguese Foundation for Science and Technology (FCT) for the PhD fellowship of Elena G. Popa (SFRH/BD/64070/2009) and research project (MIT/ECE/0047/2009). The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement no REGPOT-CT2012-316331-POLARIS
    corecore