996 research outputs found

    Video Tester -- A multiple-metric framework for video quality assessment over IP networks

    Full text link
    This paper presents an extensible and reusable framework which addresses the problem of video quality assessment over IP networks. The proposed tool (referred to as Video-Tester) supports raw uncompressed video encoding and decoding. It also includes different video over IP transmission methods (i.e.: RTP over UDP unicast and multicast, as well as RTP over TCP). In addition, it is furnished with a rich set of offline analysis capabilities. Video-Tester analysis includes QoS and bitstream parameters estimation (i.e.: bandwidth, packet inter-arrival time, jitter and loss rate, as well as GOP size and I-frame loss rate). Our design facilitates the integration of virtually any existing video quality metric thanks to the adopted Python-based modular approach. Video-Tester currently provides PSNR, SSIM, ITU-T G.1070 video quality metric, DIV and PSNR-based MOS estimations. In order to promote its use and extension, Video-Tester is open and publicly available.Comment: 5 pages, 5 figures. For the Google Code project, see http://video-tester.googlecode.com

    Optimized LTE Data Transmission Procedures for IoT: Device Side Energy Consumption Analysis

    Full text link
    The efficient deployment of Internet of Things (IoT) over cellular networks, such as Long Term Evolution (LTE) or the next generation 5G, entails several challenges. For massive IoT, reducing the energy consumption on the device side becomes essential. One of the main characteristics of massive IoT is small data transmissions. To improve the support of them, the 3GPP has included two novel optimizations in LTE: one of them based on the Control Plane (CP), and the other on the User Plane (UP). In this paper, we analyze the average energy consumption per data packet using these two optimizations compared to conventional LTE Service Request procedure. We propose an analytical model to calculate the energy consumption for each procedure based on a Markov chain. In the considered scenario, for large and small Inter-Arrival Times (IATs), the results of the three procedures are similar. While for medium IATs CP reduces the energy consumption per packet up to 87% due to its connection release optimization

    Sharing gNB components in RAN slicing: A perspective from 3GPP/NFV standards

    Full text link
    To implement the next Generation NodeBs (gNBs) that are present in every Radio Access Network (RAN) slice subnet, Network Function Virtualization (NFV) enables the deployment of some of the gNB components as Virtual Networks Functions (VNFs). Deploying individual VNF instances for these components could guarantee the customization of each RAN slice subnet. However, due to the multiplicity of VNFs, the required amount of virtual resources will be greater compared to the case where a single VNF instance carries the aggregated traffic of all the RAN slice subnets. Sharing gNB components between RAN slice subnets could optimize the trade-off between customization, isolation and resource utilization. In this article, we shed light on the key aspects in the Third Generation Partnership Project (3GPP)/NFV standards for sharing gNB components. First, we identify four possible scenarios for sharing gNB components. Then, we analyze the impact of sharing on the customization level of each RAN slice subnet. Later, we determine the main factors that enable isolation between RAN slice subnets. Finally, we propose a 3GPP/NFV-based description model to define the lifecycle management of shared gNB componentsComment: Article accepted for publication in IEEE Conference on Standards and Networking (CSCN) 201

    Analytic Analysis of Narrowband IoT Coverage Enhancement Approaches

    Full text link
    The introduction of Narrowband Internet of Things (NB-IoT) as a cellular IoT technology aims to support massive Machine-Type Communications applications. These applications are characterized by massive connections from a large number of low-complexity and low-power devices. One of the goals of NB-IoT is to improve coverage extension beyond existing cellular technologies. In order to do that, NB-IoT introduces transmission repetitions and different bandwidth allocation configurations in uplink. These new transmission approaches yield many transmission options in uplink. In this paper, we propose analytical expressions that describe the influence of these new approaches in the transmission. Our analysis is based on the Shannon theorem. The transmission is studied in terms of the required Signal to Noise Ratio, bandwidth utilization, and energy per transmitted bit. Additionally, we propose an uplink link adaptation algorithm that contemplates these new transmission approaches. The conducted evaluation summarizes the influence of these approaches. Furthermore, we present the resulting uplink link adaptation from our proposed algorithm sweeping the device's coverage.Comment: Accepted in the 2018 Global IoT Summit (GIoTS) conferenc

    Lattice simulations of adjoint QCD with one Dirac overlap fermion

    Get PDF
    In this work we investigate the infrared behavior of a Yang-Mills theory coupled to a massless fermion in the adjoint representation of the gauge group SU(2). This model has many interesting properties, corresponding to the N=2 super-Yang-Mills theory without scalars and in the recent years there has been an increasing interest toward understanding whether confinement and fermion condensation occur at low energy. We simulate the theory on the lattice close to the massless limit using the overlap discretization of the fermion action, allowing a precise and clean study of the chiral symmetry-breaking pattern and of the fermion condensate. We present results for the scale setting, the condensate, and the running of the coupling constant through the gradient flow—all of them pointing to a theory without an infrared fixed point and remaining confined deep in the infrared regime

    Potentially inappropriate prescriptions according to explicit and implicit criteria in patients with multimorbidity and polypharmacy. MULTIPAP : a cross-sectional study

    Get PDF
    Background Multimorbidity is a global health challenge that is associated with polypharmacy, increasing the risk of potentially inappropriate prescribing (PIP). There are tools to improve prescription, such as implicit and explicit criteria. Objective To estimate the prevalence of PIP in a population aged 65 to 74 years with multimorbidity and polypharmacy, according to American Geriatrics Society Beers Criteria® (2015, 2019), the Screening Tool of Older Person’s Prescription -STOPP- criteria (2008, 2014), and the Medication Appropriateness Index -MAI- criteria in primary care. Methods This was an observational, descriptive, cross-sectional study. The sample included 593 community-dwelling elderly aged 65 to 74 years, with multimorbidity and polypharmacy, who participated in the MULTIPAP trial. Socio-demographic, clinical, professional, and pharmacological-treatment variables were recorded. Potentially inappropriate prescribing was detected by computerized prescription assistance system, and family doctors evaluated the MAI. The MAI-associated factors were analysed using a logistic regression model. Results A total of 4,386 prescriptions were evaluated. The mean number of drugs was 7.4 (2.4 SD). A total of 94.1% of the patients in the study had at least one criterion for drug inappropriateness according to the MAI. Potentially inappropriate prescribing was detected in 57.7%, 43.6%, 68.8% and 71% of 50 patients according to the explicit criteria STOPP 2014, STOPP 2008, Beers 2019 and Beers 2015 respectively. For every new drug taken by a patient, the MAI score increased by 2.41 (95% CI 1.46; 3.35) points. Diabetes, ischaemic heart disease and asthma were independently associated with lower summated MAI scores.   Conclusions The prevalence of potentially inappropriate prescribing detected in the sample was high and in agreement with previous literature for populations with multimorbidity and polypharmacy. The MAI criteria detected greater inappropriateness than did the explicit criteria, but their application was more complex and difficult to automate.Publisher PDFPeer reviewe

    Label-Free Plasmonic Biosensor for Rapid, Quantitative, and Highly Sensitive COVID-19 Serology: Implementation and Clinical Validation

    Get PDF
    COVID-19; Biosensor plasmónico; SerologíaCOVID-19; Biosensor plasmònic; SerologiaCOVID-19; Plasmonic biosensor; SerologySerological tests are essential for the control and management of COVID-19 pandemic (diagnostics and surveillance, and epidemiological and immunity studies). We introduce a direct serological biosensor assay employing proprietary technology based on plasmonics, which offers rapid (<15 min) identification and quantification of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies in clinical samples, without signal amplification. The portable plasmonic device employs a custom-designed multiantigen (RBD peptide and N protein) sensor biochip and reaches detection limits in the low ng mL–1 range employing polyclonal antibodies. It has also been implemented employing the WHO-approved anti-SARS-CoV-2 immunoglobulin standard. A clinical validation with COVID-19 positive and negative samples (n = 120) demonstrates its excellent diagnostic sensitivity (99%) and specificity (100%). This positions our biosensor as an accurate and easy-to-use diagnostics tool for rapid and reliable COVID-19 serology to be employed both at laboratory and decentralized settings for the disease management and for the evaluation of immunological status during vaccination or treatment.ICN2 and UVE acknowledge financial support from H2020 Research and Innovation Programme of the European Commission (H202-SC1-PHE-Coronavirus-2020, CONVAT Project, No. 101003544). The ICN2 is funded by the CERCA program/Generalitat de Catalunya and supported by the Severo Ochoa Centres of Excellence program funded by the Spanish Research Agency (AEI, grant no. SEV-2017-0706). ICN2 group is very grateful to EPI Industries (Barcelona, Spain) for its kind donation supporting our research in COVID-19. O.C.-L. acknowledges the economic support from the Spanish Ministry of Science and Innovation and the Spanish Research Agency and the European Social Fund (ESF) (ref. BES-2017-080527) linked to the TEC 2016-78515-R project Predict. A part of the work was supported by the European Virus Archive GLOBAL (EVA-GLOBAL) project that has received funding from the EU Horizon 2020 (grant agreement No. 871029). A.T. and L.F.-B. acknowledge financial support from GENCAT-DGRIS COVID. We are indebted to all the patients who accepted to participate contributing to science advancement. We are indebted to the HCB-IDIBAPS Biobank for the human samples and data procurement and to the Fundació Glòria Soler for its support to the COVIDBANK collection. We thank the IDIBAPS Biobank for its valuable contribution to sample processing and storage. The authors acknowledge the EU Horizon 2020 Program under grant agreement no. 644956 (RAIS project) for funding the Hospital Vall d’Hebron Biobank. The VHIR-HUVH is supported by Plan Nacional de I + D + i 2013-2016 and ISCIII-Ministerio de Ciencia e Innovación, and Spanish Network for Research in Infectious Diseases (REIPI RD16/0016/0003)─cofinanced by European Development Regional Fund “A way to achieve Europe,” Operative program Intelligent Growth 2014. Part of the samples and data from patients included in this study were provided by the Vall d’Hebron University Hospital Biobank (PT17/0015/0047), integrated in the Spanish National Biobanks Network, and they were processed following standard operating procedures with the appropriate approval of the Ethical and Scientific Committee. The authors kindly appreciate the generous donation of samples and clinical data of the donors of the Sepsis Bank of HUVH Biobank and COVID-19 patients attended at HUVH
    • …
    corecore