15,679 research outputs found

    Evaluation of a Local Fault Detection Algorithm for HVDC Systems

    Get PDF
    A great increase in the amount of energy generated from clean and renewable sources integrated in the electric power system is expected worldwide in the coming years. High Voltage Direct Current (HVDC) systems are seen as a promising alternative to the traditional Alternating Current (AC) systems for the expansion of the electric power system. However, to achieve this vision, there are some remaining challenges regarding HVDC systems which need to be solved. One of the main challenges is related to fault detection and location in HVDC grids. This paper reviews the main protection algorithms available and presents the evaluation of a local fault detection algorithm for DC faults in a multi-terminal Voltage Source Conversion (VSC) based HVDC grid. The paper analyses the influence of the DC voltage sampling frequency and the cable length in the performance of the algorithm. © 2019, European Association for the Development of Renewable Energy, Environment and Power Quality (EA4EPQ).The authors thank the support from the Spanish Ministry of Economy, Industry and Competitiveness (project ENE2016-79145-R AEI/FEDER, UE) and GISEL research group IT1083-16), as well as from the University of the Basque Country UPV/EHU (research group funding PPG17/23)

    Will the area spectral efficiency monotonically grow as small cells go dense?

    Full text link
    © 2015 IEEE. In this paper, we introduce a sophisticated path loss model into the stochastic geometry analysis incorporating both line-of-sight (LoS) and non- line-of-sight (NLoS) transmissions to study their performance impact in small cell networks (SCNs). Analytical results are obtained on the coverage probability and the area spectral efficiency (ASE) assuming both a general path loss model and a special case of path loss model recommended by the 3rd Generation Partnership Project (3GPP) standards. The performance impact of LoS and NLoS transmissions in SCNs in terms of the coverage probability and the ASE is shown to be significant both quantitatively and qualitatively, compared with previous work that does not differentiate LoS and NLoS transmissions. From the investigated set of parameters, our analysis demonstrates that when the density of small cells is larger than a threshold, the network coverage probability will decrease as small cells become denser, which in turn makes the ASE suffer from a slow growth or even a notable decrease. For practical regime of small cell density, the performance results derived from our analysis are distinctively different from previous results, and shed new insights on the design and deployment of future dense/ultra-dense SCNs. It is of significant interest to further study the generality of our conclusion in other network models and with other parameter sets

    Characterization of LR-115 Type 2 Detectors for Monitoring Indoor Radon 222: Determination of the Calibration Factor

    Get PDF
    The city of Lima, capital of Peru, has about 11 million inhabitants. Lima has no records about the indoor Radon 222 concentration levels in dwellings. Hereby, we are planning to register the indoor radon concentrations in Lima and in other cities of Peru in the next three years. First, we will determine the calibration factor for the detectors which will be used in our measurements. For this purpose, Solid State Nuclear Tracks Detectors of nitrocellulose nitrate (LR-115 type 2) were used.The calibration process using a Radium 226 source was described to obtain the calibration factor. Linear response in tracks number was found in relation with irradiation time and its stability after time at the calibration chamber

    Fault detection based on ROCOV in a multi-terminal HVDC grid

    Get PDF
    Protection of a meshed VSC-HVDC grid is a challenge due to the behaviour of DC current and voltage signals during fault conditions. Protection systems must operate in a very short time range. Since fault detection should be very fast, local measurement based algorithms are mostly used; communication based algorithms lack the needed speed as a result of the communication time delay. This way, a ROCOV algorithm is proposed in this paper. This algorithm is analysed for different fault conditions.The authors gratefully acknowledge the support from the Spanish Ministry of Economy, Industry and Competitiveness (project ENE2016-79145-R AEI/FEDER, UE), the Basque Government (GISEL research group IT1191-19), as well as from the University of the Basque Country UPV/EHU (research group funding GIU18/181)

    Rostral floor plate (flexural organ) secretes glycoproteins immunologically similar to subcommissural organ glycoproteins in dogfish (Scyliorhinus canicula) embryos

    Get PDF
    The subcommissural organ of vertebrates secretes glycoproteins into the cerebrospinal fluid of the third cerebral ventricle. This material polymerizes in Reissner's fiber. During ontogenetic development, besides the subcommissural organ, the ependyma lining the pontine flexure constitutes an additional Reissner's fiber-secreting gland named flexural organ. We have studied the secretion of the flexural organ and the subcommissural organ in dogfish (Scyliorhinus canicula) embryos using three different antisera and the lectins concanavalin A and wheat germ agglutinin. AFRU is an antiserum against the bovine Reissner's fiber; Ab-600 is an antiserum against 600 kDa dogfish subcommissural organ glycoproteins; and APSO is an antiserum against immunoaffinity purified bovine subcommissural organ secretory glycoproteins. These three antisera immunostained the flexural organ indicating that it contains epitopes similar to those present in bovine and dogfish subcommissural organ glycoproteins. It seems highly probable that the flexural or an and the subcommissural organ of dogfish embryos secrete similar compound(s). Other ependymal regions were also immunostained with Ab-600 and APSO antisera. Then, Reissner's fiber-like glycoproteins were transiently expressed by most embryonary ependymal cells. These glycoproteins might play a role in the development of the central nervous system of vertebrates. (C) 1997 Elsevier Science B.V

    Experimental study and calculation of the electron transfer coefficients on the dissolution behavior of chitosan in organic acids

    Full text link
    Chitosan (CH) consists of water-insoluble N-acetylglucosamine and D-glucosamine molecules and has a higher solubility at a pH below six. This studyevaluated the solubility of chitosan in solutions of organic acids for the formation of films. HyperChemTMsoftware was used to perform the quantum analysis. In the experimental trials, the total soluble mass (TSM) and the viscosity of the solutions were measured by capillary viscometer. The chitosan filmswere made by the plate melting method, and the filmcharacteristics were evaluated. A quantum simulation suggested that lactic acid (LA) has a greater stability to react with chitosan. It was then verified experimentally that LA is a better solvent for chitosan due to the increase in its viscosity. The chemical interaction between CH and LA in solution favors the polymerization of films with better physical properties. We thereforeconclude that the uniformity in the formation of films of this polymer depends on the chemical interaction between the CH and the acid and not on the degree of solubility of the polymer

    Definition of LCA guidelines in the geothermal sector to enhance result comparability

    Get PDF
    Geothermal energy could play a crucial role in the European energy market and future scenarios focused on sustainable development. Thanks to its constant supply of concentrated energy, it can support the transition towards a low-carbon economy. In the energy sector, the decision-making process should always be supported by a holistic science-based approach to allow a comprehensive environmental assessment of the technological system, such as the life cycle assessment (LCA) methodology. In the geothermal sector, the decision-making is particularly difficult due to the large variability of reported results on environmental performance across studies. This calls for harmonized guidelines on how to conduct LCAs of geothermal systems to enhance transparency and results comparability, by ensuring consistent methodological choices and providing indications for harmonized results reporting. This work identifies the main critical aspects of performing an LCA of geothermal systems and provides solutions and technical guidance to harmonize its application. The proposed methodological approach is based on experts’ knowledge from both the geothermal and LCA sectors. The recommendations cover all the life cycle phases of geothermal energy production (i.e., construction, operation, maintenance and end of life) as well as a selection of LCA key elements thus providing a thorough base for concerted LCA guidelines for the geothermal sector. The application of such harmonized LCA framework can ensure comparability among LCA results from different geothermal systems and other renewable energy technologies

    Definition of LCA guidelines in the geothermal sector to enhance result comparability

    Get PDF
    Geothermal energy could play a crucial role in the European energy market and future scenarios focused on sustainable development. Thanks to its constant supply of concentrated energy, it can support the transition towards a low-carbon economy. In the energy sector, the decision-making process should always be supported by a holistic science-based approach to allow a comprehensive environmental assessment of the technological system, such as the life cycle assessment (LCA) methodology. In the geothermal sector, the decision-making is particularly difficult due to the large variability of reported results on environmental performance across studies. This calls for harmonized guidelines on how to conduct LCAs of geothermal systems to enhance transparency and results comparability, by ensuring consistent methodological choices and providing indications for harmonized results reporting. This work identifies the main critical aspects of performing an LCA of geothermal systems and provides solutions and technical guidance to harmonize its application. The proposed methodological approach is based on experts' knowledge from both the geothermal and LCA sectors. The recommendations cover all the life cycle phases of geothermal energy production (i.e., construction, operation, maintenance and end of life) as well as a selection of LCA key elements thus providing a thorough base for concerted LCA guidelines for the geothermal sector. The application of such harmonized LCA framework can ensure comparability among LCA results from different geothermal systems and other renewable energy technologies
    • …
    corecore