66 research outputs found

    NFAT5 Is Activated by Hypoxia: Role in Ischemia and Reperfusion in the Rat Kidney

    Get PDF
    The current hypothesis postulates that NFAT5 activation in the kidney's inner medulla is due to hypertonicity, resulting in cell protection. Additionally, the renal medulla is hypoxic (10–18 mmHg); however there is no information about the effect of hypoxia on NFAT5. Using in vivo and in vitro models, we evaluated the effect of reducing the partial pressure of oxygen (PO2) on NFAT5 activity. We found that 1) Anoxia increased NFAT5 expression and nuclear translocation in primary cultures of IMCD cells from rat kidney. 2) Anoxia increased transcriptional activity and nuclear translocation of NFAT5 in HEK293 cells. 3) The dose-response curve demonstrated that HIF-1α peaked at 2.5% and NFAT5 at 1% of O2. 4) At 2.5% of O2, the time-course curve of hypoxia demonstrated earlier induction of HIF-1α gene expression than NFAT5. 5) siRNA knockdown of NFAT5 increased the hypoxia-induced cell death. 6) siRNA knockdown of HIF-1α did not affect the NFAT5 induction by hypoxia. Additionally, HIF-1α was still induced by hypoxia even when NFAT5 was knocked down. 7) NFAT5 and HIF-1α expression were increased in kidney (cortex and medulla) from rats subjected to an experimental model of ischemia and reperfusion (I/R). 7) Experimental I/R increased the NFAT5-target gene aldose reductase (AR). 8) NFAT5 activators (ATM and PI3K) were induced in vitro (HEK293 cells) and in vivo (I/R kidneys) with the same timing of NFAT5. 8) Wortmannin, which inhibits ATM and PI3K, reduces hypoxia-induced NFAT5 transcriptional activation in HEK293 cells. These results demonstrate for the first time that NFAT5 is induced by hypoxia and could be a protective factor against ischemic damage

    Mechanism of cellular rejection in transplantation

    Get PDF
    The explosion of new discoveries in the field of immunology has provided new insights into mechanisms that promote an immune response directed against a transplanted organ. Central to the allograft response are T lymphocytes. This review summarizes the current literature on allorecognition, costimulation, memory T cells, T cell migration, and their role in both acute and chronic graft destruction. An in depth understanding of the cellular mechanisms that result in both acute and chronic allograft rejection will provide new strategies and targeted therapeutics capable of inducing long-lasting, allograft-specific tolerance

    Effects of quercetin on apoptosis, NF-κB and NOS gene expression in renal ischemia/reperfusion injury

    No full text
    The aim of this study was to investigate the effects of quercetin on nitric oxide synthase (NOS), nuclear factor-κB (NF-κB) and apoptosis in renal ischemia/reperfusion (I/R) injury in rats. A total of 42 Sprague-Dawley rats were divided into three groups. The control, I/R and I/R+quercetin (I/R+Q) groups were treated with quercetin (50 mg/kg intraperitoneal) 1 h prior to the induction of ischemia. Tissue malondialdehyde (MDA) and glutathione (GSH) levels were determined by high-performance liquid chromatography (HPLC). p53, endothelial NOS (eNOS) and NF-κB expression were assessed immunohistochemically, and apoptosis assesment was performed using terminal deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL) assay. The mRNA levels of inducible NOS (iNOS) in renal tissue were determined by real-time polymerase chain reaction (RT-PCR). MDA levels were significantly decreased in the quercetin group compared to the I/R group. However, GSH levels were significantly increased with quercetin treatment in the I/R group. Histological results, the number of apoptotic and p53-positive cells, NF-κB and eNOS expression levels were significantly decreased in the quercetin treatment group compared to the I/R group. iNOS gene expression increased in the I/R group, but no significant difference was found between the I/R and quercetin treatment groups. Therefore, quercetin not only has antioxidant and anti-apoptotic activities, but also has an inhibitory effect on eNOS and NF-κB for renal tissue protection during I/R injury in rats. Therefore, quercetin may be a promising renoprotective therapeutic agent
    corecore