6,873 research outputs found

    Probabilistic Inference from Arbitrary Uncertainty using Mixtures of Factorized Generalized Gaussians

    Full text link
    This paper presents a general and efficient framework for probabilistic inference and learning from arbitrary uncertain information. It exploits the calculation properties of finite mixture models, conjugate families and factorization. Both the joint probability density of the variables and the likelihood function of the (objective or subjective) observation are approximated by a special mixture model, in such a way that any desired conditional distribution can be directly obtained without numerical integration. We have developed an extended version of the expectation maximization (EM) algorithm to estimate the parameters of mixture models from uncertain training examples (indirect observations). As a consequence, any piece of exact or uncertain information about both input and output values is consistently handled in the inference and learning stages. This ability, extremely useful in certain situations, is not found in most alternative methods. The proposed framework is formally justified from standard probabilistic principles and illustrative examples are provided in the fields of nonparametric pattern classification, nonlinear regression and pattern completion. Finally, experiments on a real application and comparative results over standard databases provide empirical evidence of the utility of the method in a wide range of applications

    Heatmaps in soccer: event vs tracking datasets

    Full text link
    We investigate how similar heatmaps of soccer players are when constructed from (i) event datasets and (ii) tracking datasets. When using event datasets, we show that the scale at which the events are grouped strongly influences the correlation with the tracking heatmaps. Furthermore, there is an optimal scale at which the correlation between event and tracking heatmaps is the highest. However, even at the optimal scale, correlations between both approaches are moderate. Furthermore, there is high heterogeneity in the players' correlation, ranging from negative values to correlations close to the unity. We show that the number of events performed by a player does not crucially determine the level of correlation between both heatmaps. Finally, we analyzed the influence of the player position, showing that defenders are the players with the highest correlations while forwards have the lowest.Comment: 6 pages, 5 figure

    A Study of Two-Temperature Non-Equilibrium Ising Models: Critical Behavior and Universality

    Full text link
    We study a class of 2D non-equilibrium Ising models based on competing dynamics induced by contact with heat-baths at two different temperatures. We make a comparative study of the non-equilibrium versions of Metropolis, heat bath/Glauber and Swendsen-Wang dynamics and focus on their critical behavior in order to understand their universality classes. We present strong evidence that some of these dynamics have the same critical exponents and belong to the same universality class as the equilibrium 2D Ising model. We show that the bond version of the Swendsen-Wang update algorithm can be mapped into an equilibrium model at an effective temperature.Comment: 12 pages of LaTeX plus 18 pages of postscript figures in a uuencoded file (608k

    Stability and Reversible Oxidation of Sub-Nanometric Cu5 Metal Clusters: Integrated Experimental Study and Theoretical Modeling**

    Get PDF
    Sub-nanometer metal clusters have special physical and chemical properties, significantly different from those of nanoparticles. However, there is a major concern about their thermal stability and susceptibility to oxidation. In situ X-ray Absorption spectroscopy and Near Ambient Pressure X-ray Photoelectron spectroscopy results reveal that supported Cu5 clusters are resistant to irreversible oxidation at least up to 773 K, even in the presence of 0.15 mbar of oxygen. These experimental findings can be formally described by a theoretical model which combines dispersion-corrected DFT and first principles thermochemistry revealing that most of the adsorbed O2 molecules are transformed into superoxo and peroxo species by an interplay of collective charge transfer within the network of Cu atoms and large amplitude “breathing” motions. A chemical phase diagram for Cu oxidation states of the Cu5-oxygen system is presented, clearly different from the already known bulk and nano-structured chemistry of Cu

    Electrochemical and bioelectrocatalytical properties of novel block-copolymers containing interacting ferrocenyl units

    Get PDF
    The electrochemical characterization of three different polystyrene-b-polybutadiene block copolymers functionalized with ferrocenyl units electronically communicated, PSm-PBn(HSiMeFc2)p where m=615, n=53, p=39 (1), m=375, n=92, p=76 (2) and m=455, n=204, p=170 (3), has been carried out both in solution and electrochemically deposited onto platinum electrodes. The bioelectrocatalytical properties of electrodes modified with the polymers in the nicotinamide dinucleotide (NADH) and glucose oxidase (GOx) oxidations have been investigated as a function of the constitution and structure of the polymers. The analytical properties of electrodes modified with these polymers as sensors of NADH and GOx are described. In addition, an amperometric biosensor for glucose, prepared by electrostatic immobilization of glucose oxidase onto a platinum electrode modified with one of the ferrocenyl block copolymers as an example, has been developed. The results confirm that electrodes modified with the examined copolymers act as efficient redox mediators for the electrocatalytic oxidation of both reduced nicotinamide dinucleotide cofactor and glucose oxidase. The reaction with NADH proceeds via formation of a charge-transfer intermediate before yielding the reaction products. This is a novel example of electrodes modified with ferrocene derivatives that can be applied to the determination of NADH without the use of diaphorase. The redox copolymers co-immobilized with glucose-oxidase have been successfully used as amperometric biosensors for glucose determinations. As expected these compounds allow using lower working potentials. The sensitivities and detection limits obtained are comparable or even better than those of other ferrocene-modified polymers mediator electrodes

    Silicon quantum dots in photovoltaic devices: device fabrication, characterization and comparison of materials

    Get PDF
    The realization of crystalline silicon tandem solar cells relies on silicon nanocrystal (Si NC) quantum dots as the absorber of the top solar cell. Quantum confinement of charge carriers within the nanocrystals permits to achieve a band gap up to 2 eV which can be adjusted according to the size of the nanocrystals. This enables the construction of all-crystalline Si tandem solar cells, and increases the theoretical efficiency limit from 33 % to 42.5 % due to the addition of a second band gap. In this work, the electrical and photovoltaic properties of Si NC films are assessed and the most prominent material systems (SiO2, Si3N4, SiC) are compared. P-i-n solar cells are presented which feature Si NC as the intrinsic absorber layer and permit to characterize quantum confinement electrically on device level. P-i-n solar cells with Si NC in SiC in the i-region have yielded open circuit voltages of up to 370mV

    Soluble/MOF-Supported Palladium Single Atoms Catalyze the Ligand-, Additive-, and Solvent-Free Aerobic Oxidation of Benzyl Alcohols to Benzoic Acids

    Get PDF
    Metal single-atom catalysts (SACs) promise great rewards in terms of metal atom efficiency. However, the requirement of particular conditions and supports for their synthesis, together with the need of solvents and additives for catalytic implementation, often precludes their use under industrially viable conditions. Here, we show that palladium single atoms are spontaneously formed after dissolving tiny amounts of palladium salts in neat benzyl alcohols, to catalyze their direct aerobic oxidation to benzoic acids without ligands, additives, or solvents. With this result in hand, the gram-scale preparation and stabilization of Pd SACs within the functional channels of a novel methyl-cysteine-based metal-organic framework (MOF) was accomplished, to give a robust and crystalline solid catalyst fully characterized with the help of single-crystal X-ray diffraction (SCXRD). These results illustrate the advantages of metal speciation in ligand-free homogeneous organic reactions and the translation into solid catalysts for potential industrial implementation.This work was supported by the Ministero dell’Istruzione, dell’Università e della Ricerca (Italy) and the MINECO (Spain) (Projects PID2019−104778GB−I00, CTQ 2017–86735–P, RTC–2017–6331–5, Severo Ochoa program SEV–2016–0683 and Excellence Unit “Maria de Maeztu” CEX2019−000919−M). E.T. and M.M. thank MINECO and ITQ for the concession of a contract. D.A. acknowledges the financial support of the Fondazione CARIPLO/“Economia Circolare: ricerca per un futuro sostenibile” 2019, Project code: 2019–2090, MOCA and Diamond Light Source for awarded beamtime and provision of synchrotron radiation facilities and thanks Dr. Sarah Barnett and David Allan for their assistance at I19 beamline (Proposal No. MT18768-1). Thanks are also extended to the “2019 Post-doctoral Junior Leader-Retaining Fellowship, la Caixa Foundation (ID100010434 and fellowship code LCF/BQ/PR19/11700011” (J.F.-S.) and “La Caixa” scholarship (ID 100010434) LCF/BQ/DI19/11730029 (J.B.-S). E.P. acknowledges the financial support of the European Research Council under the European Union’s Horizon 2020 research and innovation programme/ERC Grant Agreement No 814804, MOF reactors. J.O.-M. acknowledges the Juan de la Cierva program for the concession of a contract (IJC2018-036514-I). We gratefully acknowledge to ALBA synchrotron for allocating beamtime and CLÆSS beamline staff for their technical support during our experiment. The computations were performed on the Tirant III cluster of the Servei d’Informàtica of the University of Valencia.Peer reviewe
    • 

    corecore