3,182 research outputs found

    Composite Fermions with Orbital Magnetization

    Full text link
    For quantum Hall systems, in the limit of large magnetic field (or equivalently small electron band mass mbm_b), the static response of electrons to a spatially varying magnetic field is largely determined by kinetic energy considerations. This response is not correctly given in existing approximations based on the Fermion Chern-Simons theory of the partially filled Landau level. We remedy this problem by attaching an orbital magnetization to each fermion to separate the current into magnetization and transport contributions, associated with the cyclotron and guiding center motions respectively. This leads to a Chern-Simons Fermi liquid description of the ν=12m\nu=\frac{1}{2m} state which correctly predicts the mbm_b dependence of the static and dynamic response in the limit mb0m_b \rightarrow 0.Comment: 4 pages, RevTeX, no figure

    Response Function of the Fractional Quantized Hall State on a Sphere I: Fermion Chern-Simons Theory

    Full text link
    Using a well known singular gauge transformation, certain fractional quantized Hall states can be modeled as integer quantized Hall states of transformed fermions interacting with a Chern-Simons field. In previous work we have calculated the electromagnetic response function of these states at arbitrary frequency and wavevector by using the Random Phase Approximation (RPA) in combination with a Landau Fermi Liquid approach. We now adopt these calculations to a spherical geometry in order to facilitate comparison with exact diagonalizations performed on finite size systems.Comment: 39 pages (REVTeX 3.0). Postscript file for this paper are available on the World Wide Web at http://cmtw.harvard.edu/~simon/ ; Preprint number HU-CMT-94S0

    Proteomic responses to elevated ocean temperature in ovaries of the ascidian \u3cem\u3eCiona intestinalis\u3c/em\u3e

    Get PDF
    Ciona intestinalis, a common sea squirt, exhibits lower reproductive success at the upper extreme of the water temperatures it experiences in coastal New England. In order to understand the changes in protein expression associated with elevated temperatures, and possible response to global temperature change, we reared C. intestinalis from embryos to adults at 18°C (a temperature at which they reproduce normally at our collection site in Rhode Island) and 22°C (the upper end of the local temperature range). We then dissected ovaries from animals at each temperature, extracted protein, and measured proteomic levels using shotgun mass spectrometry (LC-MS/MS). 1532 proteins were detected at a 1% false discovery rate present in both temperature groups by our LC-MS/MS method. 62 of those proteins are considered up- or down-regulated according to our statistical criteria. Principal component analysis shows a clear distinction in protein expression pattern between the control (18°C) group and high temperature (22°C) group. Similar to previous studies, cytoskeletal and chaperone proteins are upregulated in the high temperature group. Unexpectedly, we find evidence that proteolysis is downregulated at the higher temperature. We propose a working model for the high temperature response in C. intestinalis ovaries whereby increased temperature induces upregulation of signal transduction pathways involving PTPN11 and CrkL, and activating coordinated changes in the proteome especially in large lipid transport proteins, cellular stress responses, cytoskeleton, and downregulation of energy metabolism

    Finite-Wavevector Electromagnetic Response of Fractional Quantized Hall States

    Full text link
    A fractional quantized Hall state with filling fraction ν=p/(2mp+1)\nu = p/(2mp+1) can be modeled as an integer quantized Hall state of transformed fermions, interacting with a Chern-Simons field. The electromagnetic response function for these states at arbitrary frequency and wavevector can be calculated using a semiclassical approximation or the Random Phase Approximation (RPA). However, such calculations do not properly take into account the large effective mass renormalization which is present in the Chern-Simons theory. We show how the mass renormalization can be incorporated in a calculation of the response function within a Landau Fermi liquid theory approach such that Kohn's theorem and the ff-sum rules are properly satisfied. We present results of such calculations.Comment: 19 pages (REVTeX 3.0), 5 figures available on request; HU-CMT-93S0

    Localization of Native Mms13 to the Magnetosome Chain of Magnetospirillum magneticum AMB-1 Using Immunogold Electron Microscopy, Immunofluorescence Microscopy and Biochemical Analysis

    Get PDF
    Magnetotactic bacteria (MTB) biomineralize intracellular magnetite (Fe3O4 ) crystals surrounded by a magnetosome membrane (MM). The MM contains membrane-specific proteins that control Fe3O4 mineralization in MTB. Previous studies have demonstrated that Mms13 is a critical protein within the MM. Mms13 can be isolated from the MM fraction of Magnetospirillum magneticum AMB-1 and a Mms13 homolog, MamC, has been shown to control the size and shape of magnetite nanocrystals synthesized in-vitro. The objective of this study was to use several independent methods to definitively determine the localization of native Mms13 in M. magneticum AMB-1. Using Mms13-immunogold labeling and transmission electron microscopy (TEM), we found that Mms13 is localized to the magnetosome chain of M. magneticum AMB-1 cells. Mms13 was detected in direct contact with magnetite crystals or within the MM. Immunofluorescence detection of Mms13 in M. magneticum AMB-1 cells by confocal laser scanning microscopy (CLSM) showed Mms13 localization along the length of the magnetosome chain. Proteins contained within the MM were resolved by SDS-PAGE for Western blot analysis and LC-MS/MS (liquid chromatography with tandem mass spectrometry) protein sequencing. Using Anti-Mms13 antibody, a protein band with a molecular mass of ~14 kDa was detected in the MM fraction only. This polypeptide was digested with trypsin, sequenced by LC-MS/MS and identified as magnetosome protein Mms13. Peptides corresponding to the protein’s putative MM domain and catalytic domain were both identified by LC-MS/MS. Our results (Immunogold TEM, Immunofluorescence CLSM, Western blot, LC-MS/MS), combined with results from previous studies, demonstrate that Mms13 and homolog proteins MamC and Mam12, are localized to the magnetosome chain in MTB belonging to the class Alphaproteobacteria. Because of their shared localization in the MM and highly conserved amino acid sequences, it is likely that MamC, Mam12, and Mms13 share similar roles in the biomineralization of Fe3O4 nanocrystals.National Science Foundation, grant number EAR-2038207EAR-1423939Ministerio de Economía y Competitividad, SPAIN and Fondo Europeo de Desarrollo Regional, FEDER grant numbers CGL2010-18274 and CGL2013-4661

    Fish introductions and light modulate food web fluxes in tropical streams: a whole-ecosystem experimental approach

    Get PDF
    Decades of ecological study have demonstrated the importance of top-down and bottom-up controls on food webs, yet few studies within this context have quantified the magnitude of energy and material fluxes at the whole-ecosystem scale. We examined top-down and bottom-up effects on food web fluxes using a field experiment that manipulated the presence of a consumer, the Trinidadian guppy Poecilia reticulata, and the production of basal resources by thinning the riparian forest canopy to increase incident light. To gauge the effects of these reach-scale manipulations on food web fluxes, we used a nitrogen (N-15) stable isotope tracer to compare basal resource treatments (thinned canopy vs. control) and consumer treatments (guppy introduction vs. control). The thinned canopy stream had higher primary production than the natural canopy control, leading to increased N fluxes to invertebrates that feed on benthic biofilms (grazers), fine benthic organic matter (collector-gatherers), and organic particles suspended in the water column (filter feeders). Stream reaches with guppies also had higher primary productivity and higher N fluxes to grazers and filter feeders. In contrast, N fluxes to collector-gatherers were reduced in guppy introduction reaches relative to upstream controls. N fluxes to leaf-shredding invertebrates, predatory invertebrates, and the other fish species present (Hart\u27s killifish, Anablepsoides hartii) did not differ across light or guppy treatments, suggesting that effects on detritus-based linkages and upper trophic levels were not as strong. Effect sizes of guppy and canopy treatments on N flux rates were similar for most taxa, though guppy effects were the strongest for filter feeding invertebrates while canopy effects were the strongest for collector-gatherer invertebrates. Combined, these results extend previous knowledge about top-down and bottom-up controls on ecosystems by providing experimental, reach-scale evidence that both pathways can act simultaneously and have equally strong influence on nutrient fluxes from inorganic pools through primary consumers

    The discovery BPD (D-BPD) program: Study protocol of a prospective translational multicenter collaborative study to investigate determinants of chronic lung disease in very low birth weight infants

    Get PDF
    Background: Premature birth is a growing and serious public health problem affecting more than one of every ten infants worldwide. Bronchopulmonary dysplasia (BPD) is the most common neonatal morbidity associated with prematurity and infants with BPD suffer from increased incidence of respiratory infections, asthma, other forms of chronic lung illness, and death (Day and Ryan, Pediatr Res 81: 210-213, 2017; Isayama et la., JAMA Pediatr 171:271-279, 2017). BPD is now understood as a longitudinal disease process influenced by the intrauterine environment during gestation and modulated by gene-environment interactions throughout the neonatal and early childhood periods. Despite of this concept, there remains a paucity of multidisciplinary team-based approaches dedicated to the comprehensive study of this complex disease. Methods: The Discovery BPD (D-BPD) Program involves a cohort of infants < 1,250 g at birth prospectively followed until 6 years of age. The program integrates analysis of detailed clinical data by machine learning, genetic susceptibility and molecular translation studies. Discussion: The current gap in understanding BPD as a complex multi-trait spectrum of different disease endotypes will be addressed by a bedside-to-bench and bench-to-bedside approach in the D-BPD program. The D-BPD will provide enhanced understanding of mechanisms, evolution and consequences of lung diseases in preterm infants. The D-BPD program represents a unique opportunity to combine the expertise of biologists, neonatologists, pulmonologists, geneticists and biostatisticians to examine the disease process from multiple perspectives with a singular goal of improving outcomes of premature infants. Trial registration: Does not apply for this study.Fil: Ofman, Gaston. University of Alabama at Birmingahm; Estados UnidosFil: Caballero, Mauricio Tomás. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Álvarez Paggi, Damián Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Marzec, Jacqui. National Institute of Environmental Health Sciences; Estados UnidosFil: Nowogrodzki, Florencia. No especifíca;Fil: Cho, Hye Youn. National Institute of Environmental Health Sciences; Estados UnidosFil: Sorgetti, Mariana. No especifíca;Fil: Colantonio, Guillermo. No especifíca;Fil: Bianchi, Alejandra. No especifíca;Fil: Prudent, Luis M.. Fundación para la Salud Materno Infantil; ArgentinaFil: Vain, Néstor Eduardo. Fundación para la Salud Materno Infantil; Argentina. Sanatorio de la Trinidad Palermo.; ArgentinaFil: Mariani, Gonzalo Luis. Hospital Italiano; ArgentinaFil: Digregorio, Jorge. Sanatorio de la Trinidad Palermo.; ArgentinaFil: Lopez Turconi, Elba. No especifíca;Fil: Osio, Cristina. Sanatorio "Otamendi y Miroli S. A."; ArgentinaFil: Galletti, Maria Fernanda. Hospital Italiano; ArgentinaFil: Quiros, Mariangeles. Clinica y Maternidad Suizo Argentina; ArgentinaFil: Brum, Andrea. Sanatorio de la Trinidad Palermo.; ArgentinaFil: Lopez Garcia, Santiago. No especifíca;Fil: Garcia, Silvia. Sanatorio "Otamendi y Miroli S. A."; ArgentinaFil: Bell, Douglas. National Institute of Environmental Health Sciences; Estados UnidosFil: Jones, Marcus H.. Pontificia Universidade Católica do Rio Grande do Sul; BrasilFil: Tipple, Trent E.. University of Alabama at Birmingahm; Estados UnidosFil: Kleeberger, Steven R.. National Institute of Environmental Health Sciences; Estados UnidosFil: Polack, Fernando Pedro. University of Alabama at Birmingahm; Estados Unido

    Effects of dissipation on quantum phase transitions

    Full text link
    We discuss the effect of dissipation on quantum phase transitions. In particular we concentrate on the Superconductor to Insulator and Quantum-Hall to Insulator transitions. By invoking a phenomenological parameter α\alpha to describe the coupling of the system to a continuum of degrees of freedom representing the dissipative bath, we obtain new phase diagrams for the quantum Hall and superconductor-insulator problems. Our main result is that, in two-dimensions, the metallic phases observed in finite magnetic fields (possibly also strictly zero field) are adiabatically deformable from one to the other. This is plausible, as there is no broken symmetry which differentiates them.Comment: 13 pages, 4 figure
    corecore