4,112 research outputs found

    Asymmetries of Heavy Elements in the Young Supernova Remnant Cassiopeia A

    Full text link
    Supernova remnants (SNRs) offer the means to study supernovae (SNe) long after the original explosion and can provide a unique insight into the mechanism that governs these energetic events. In this work, we examine the morphologies of X-ray emission from different elements found in the youngest known core-collapse (CC) SNR in the Milky Way, Cassiopeia A. The heaviest elements exhibit the highest levels of asymmetry, which we relate to the burning process that created the elements and their proximity to the center of explosion. Our findings support recent model predictions that the material closest to the source of explosion will reflect the asymmetries inherent to the SN mechanism. Additionally, we find that the heaviest elements are moving more directly opposed to the neutron star (NS) than the lighter elements. This result is consistent with NS kicks arising from ejecta asymmetries.Comment: 12 pages, 4 figures, 2 tables Updated to include an analysis of Emission Measure Maps (vs the, still-included, continuum-subtracted flux maps), used as another proxy for mass maps. The results have not changed; the emission measure maps also show increasing asymmetry with ejecta mass. (Now matches the version published in ApJ. Vol 889 Issue 2 (2020) 144

    The Age Evolution of the Radio Morphology of Supernova Remnants

    Full text link
    Recent hydrodynamical models of supernova remnants (SNRs) demonstrate that their evolution depends heavily on the inhomogeneities of the surrounding medium. As SNRs expand, their morphologies are influenced by the non-uniform and turbulent structure of their environments, as reflected in their radio continuum emission. In this paper, we measure the asymmetries of 96 SNRs in radio continuum images from three surveys of the Galactic plane and compare these results to the SNRs' radii, which we use as a proxy for their age. We find that larger (older) SNRs are more elliptical/elongated and more mirror asymmetric than smaller (younger) SNRs, though the latter vary in their degrees of asymmetry. This result suggests that SNR shells become more asymmetric as they sweep up the interstellar medium (ISM), as predicted in hydrodynamical models of SNRs expanding in a multi-phase or turbulent ISM.Comment: 16 pages, 5 figures, accepted by ApJ; sample expanded from 22 to 96 source

    Evidence of Particle Acceleration in the Superbubble 30 Doradus C with NuSTAR

    Get PDF
    We present evidence of diffuse, non-thermal X-ray emission from the superbubble 30 Doradus C (30 Dor C) using hard X-ray images and spectra from NuSTAR observations. For this analysis, we utilize data from a 200 ks targeted observation of 30 Dor C as well as 2.8 Ms of serendipitous off-axis observations from the monitoring of nearby SN 1987A. The complete shell of 30 Dor C is detected up to 20 keV, and the young supernova remnant MCSNR J0536-6913 in the southeast of 30 Dor C is not detected above 8 keV. Additionally, six point sources identified in previous Chandra and XMM-Newton investigations have hard X-ray emission coincident with their locations. Joint spectral fits to the NuSTAR and XMM-Newton spectra across the 30 Dor C shell confirm the non-thermal nature of the diffuse emission. Given the best-fit rolloff frequencies of the X-ray spectra, we find maximum electron energies of 70-110 TeV (assuming a B-field strength of 4μ\muG), suggesting 30 Dor C is accelerating particles. Particles are either accelerated via diffusive shock acceleration at locations where the shocks have not stalled behind the Hα\alpha shell, or cosmic-rays are accelerated through repeated acceleration of low-energy particles via turbulence and magnetohydrodynamic waves in the bubble's interior.Comment: 14 pages, 8 figures, ApJ, in pres

    A Chandra View Of Nonthermal Emission In The Northwestern Region Of Supernova Remnant RCW 86: Particle Acceleration And Magnetic Fields

    Get PDF
    The shocks of supernova remnants (SNRs) are believed to accelerate particles to cosmic ray (CR) energies. The amplification of the magnetic field due to CRs propagating in the shock region is expected to have an impact on both the emission from the accelerated particle population, as well as the acceleration process itself. Using a 95 ks observation with the Advanced CCD Imaging Spectrometer (ACIS) onboard the Chandra X-ray Observatory, we map and characterize the synchrotron emitting material in the northwestern region of RCW 86. We model spectra from several different regions, filamentary and diffuse alike, where emission appears dominated by synchrotron radiation. The fine spatial resolution of Chandra allows us to obtain accurate emission profiles across 3 different non-thermal rims in this region. The narrow width (l = 10''-30'') of these filaments constrains the minimum magnetic field strength at the post-shock region to be approximately 80 {\mu}G.Comment: 7 pages, 3 figures, submitted for publication at the Astrophysical Journa

    Neural ODEs as a discovery tool to characterize the structure of the hot galactic wind of M82

    Full text link
    Dynamic astrophysical phenomena are predominantly described by differential equations, yet our understanding of these systems is constrained by our incomplete grasp of non-linear physics and scarcity of comprehensive datasets. As such, advancing techniques in solving non-linear inverse problems becomes pivotal to addressing numerous outstanding questions in the field. In particular, modeling hot galactic winds is difficult because of unknown structure for various physical terms, and the lack of \textit{any} kinematic observational data. Additionally, the flow equations contain singularities that lead to numerical instability, making parameter sweeps non-trivial. We leverage differentiable programming, which enables neural networks to be embedded as individual terms within the governing coupled ordinary differential equations (ODEs), and show that this method can adeptly learn hidden physics. We robustly discern the structure of a mass-loading function which captures the physical effects of cloud destruction and entrainment into the hot superwind. Within a supervised learning framework, we formulate our loss function anchored on the astrophysical entropy (KP/ρ5/3K \propto P/\rho^{5/3}). Our results demonstrate the efficacy of this approach, even in the absence of kinematic data vv. We then apply these models to real Chandra X-Ray observations of starburst galaxy M82, providing the first systematic description of mass-loading within the superwind. This work further highlights neural ODEs as a useful discovery tool with mechanistic interpretability in non-linear inverse problems. We make our code public at this GitHub repository (https://github.com/dustindnguyen/2023_NeurIPS_NeuralODEs_M82).Comment: 9 Pages, 2 Figures, Accepted at the NeurIPS 2023 workshop on Machine Learning and the Physical Science

    The Role of Stellar Feedback in the Dynamics of HII Regions

    Full text link
    Stellar feedback is often cited as the biggest uncertainty in galaxy formation models today. This uncertainty stems from a dearth of observational constraints as well as the great dynamic range between the small scales (<1 pc) where the feedback occurs and the large scales of galaxies (>1 kpc) that are shaped by this feedback. To bridge this divide, in this paper we aim to assess observationally the role of stellar feedback at the intermediate scales of HII regions. In particular, we employ multiwavelength data to examine several stellar feedback mechanisms in a sample of 32 HII regions in the Large and Small Magellanic Clouds (LMC and SMC, respectively). Using optical, infrared, radio, and X-ray images, we measure the pressures exerted on the shells from the direct stellar radiation, the dust-processed radiation, the warm ionized gas, and the hot X-ray emitting gas. We find that the warm ionized gas dominates over the other terms in all of the sources, although two have comparable dust-processed radiation pressures to their warm gas pressures. The hot gas pressures are comparatively weak, while the direct radiation pressures are 1-2 orders of magnitude below the other terms. We discuss the implications of these results, particularly highlighting evidence for hot gas leakage from the HII shells and regarding the momentum deposition from the dust-processed radiation to the warm gas. Furthermore, we emphasize that similar observational work should be done on very young HII regions to test whether direct radiation pressure and hot gas can drive the dynamics at early times.Comment: 19 pages, 8 figures; accepted by Ap

    Spatially-Resolved Study of Recombining Plasma in W49B Using XMM-Newton

    Full text link
    W49B is the youngest SNR to date that exhibits recombining plasma. The two prevailing theories of this overionization are rapid cooling via adiabatic expansion or through thermal conduction with an adjacent cooler medium. To constrain the origin of the recombining plasma in W49B, we perform a spatially-resolved spectroscopic study of deep XMM-Newton data across 46 regions. We adopt a 3-component model (with one ISM and two ejecta components), and we find that recombining plasma is present throughout the entire SNR, with increasing overionization from east to west. The latter result is consistent with previous studies, and we attribute the overionization in the west to adiabatic expansion. However, our findings contrast these prior works as we find evidence of overionization in the east as well. As the SNR is interacting with molecular material there, we investigate the plausibility of thermal conduction as the origin of the rapid cooling. We show that based on the estimated timescales, it is possible that small-scale thermal conduction through evaporation of clumpy, dense clouds with a scale of 0.1-1.0 pc can explain the observed overionization in the east.Comment: 19 pages, 8 figures, 2 tables, submitted to Ap
    corecore