12 research outputs found

    DNA microarray analysis of genes differentially expressed in diet-induced (cafeteria) obese rats.

    Get PDF
    Objective: To better understand the molecular basis of dietary obesity, we examined adipose tissue genes differentially expressed in an obesity model using DNA microarray analysis. Research Methods and Procedures: We assessed the expression level of over 12,500 transcripts in epididymal fat pads from (cafeteria) obese and control rats with the aid of the array technology. Results: Cafeteria (obese) rats weighed 50% more and had 2.5-fold higher levels of epididymal fat and elevated levels of circulating leptin. Adipose genes differentially expressed in obese and control rats were categorized into five groups: macronutrient metabolism, transcription factors, hormone receptor and signal transduction, redox and stress proteins, and cellular cytoskeleton. Interestingly, the expression levels of a number of genes involved in lipid metabolism such as glycerol-3-phosphate dehydrogenase, stearoyl coenzyme A desaturase, together with the transcription factors implicated in adipocyte differentiation (CAAT/enhancer binding protein-alpha and peroxisome proliferator-activated receptor-gamma), were significantly increased in obese animals compared with control. The most up-regulated transcripts were the ob (49.2-fold change) and the fatty acid-binding protein genes (15.7- fold change). In contrast, genes related to redox and stress protein were generally down-regulated in obese animals compared with the control. Discussion: Our study showed that in diet-induced obesity, the expression levels of some important genes implicated in lipid metabolism were up-regulated, whereas those related to redox and stress protein were down-regulated in obese animals compared with control. This pattern of gene expression may occur in human obesity cases after high-fat intake

    Glutamatergic pallidothalamic projections and their implications in the pathophysiology of Parkinson's disease

    No full text
    GABAergic projections emitted from the entopeduncular nucleus (ENT) and the substantia nigra pars reticulata (SNr) innervate different thalamic nuclei and they are known to be hyperactive after dopaminergic depletion. Here we show that isoform 2 of the vesicular glutamate transporter (VGLUT2) is expressed by neurons in the ENT nucleus but not in the SNr. Indeed, dual in situ hybridization demonstrated that the ENT nucleus contains two different subpopulations of projection neurons, one single-expressing GAD65/67 mRNAs and another one that co-expresses either of the GAD isoforms together with VGLUT2 mRNA. Unilateral dopaminergic depletion induced marked changes in pallidothalamic-projecting neuron gene expression, resulting in increased expression of GAD65/67 mRNAs together with a clear down-regulation of VGLUT2 mRNA expression. Our results indicate that the increased thalamic inhibition typical of dopamine depletion might be explained by a synergistic effect of increased GABA outflow coupled to decreased glutamate levels, both neurotransmitters coming from ENT neurons

    Glutamatergic pallidothalamic projections and their implications in the pathophysiology of Parkinson's disease

    No full text
    GABAergic projections emitted from the entopeduncular nucleus (ENT) and the substantia nigra pars reticulata (SNr) innervate different thalamic nuclei and they are known to be hyperactive after dopaminergic depletion. Here we show that isoform 2 of the vesicular glutamate transporter (VGLUT2) is expressed by neurons in the ENT nucleus but not in the SNr. Indeed, dual in situ hybridization demonstrated that the ENT nucleus contains two different subpopulations of projection neurons, one single-expressing GAD65/67 mRNAs and another one that co-expresses either of the GAD isoforms together with VGLUT2 mRNA. Unilateral dopaminergic depletion induced marked changes in pallidothalamic-projecting neuron gene expression, resulting in increased expression of GAD65/67 mRNAs together with a clear down-regulation of VGLUT2 mRNA expression. Our results indicate that the increased thalamic inhibition typical of dopamine depletion might be explained by a synergistic effect of increased GABA outflow coupled to decreased glutamate levels, both neurotransmitters coming from ENT neurons

    High-resolution neuroanatomical tract-tracing for the analysis of striatal microcircuits

    No full text
    Although currently available retrograde tracers are useful tools for identifying striatal projection neurons, transported tracers often remained restricted within the neuronal somata and the thickest, main dendrites. Indeed, thin dendrites located far away from the cell soma as well as post-synaptic elements such as dendritic spines cannot be labeled unless performing intracellular injections. In this regard, the subsequent use of anterograde tracers for the labeling of striatal afferents often failed to unequivocally elucidate whether a given afferent makes true contacts with striatal projections neurons. Here we show that such a technical constraint can now be circumvented by retrograde tracing using rabies virus (RV). Immunofluorescence detection with a monoclonal antibody directed against the viral phosphoprotein resulted in a consistent Golgi-like labeling of striatal projection neurons, allowing clear visualization of small-size elements such as thin dendrites as well as dendritic spines. The combination of this retrograde tracing together with dual anterograde tracing of cortical and thalamic afferents has proven to be a useful tool for ascertaining striatal microcircuits. Indeed, by taking advantage of the trans-synaptic spread of RV, different subpopulations of local-circuit neurons modulating striatal efferent neurons can also be identified. At the striatal level, structures displaying labeling were visualized under the confocal laser-scanning microscope at high resolution. Once acquired, confocal stacks of images were firstly deconvoluted and then processed through 3D-volume rendering in order to unequivocally identify true contacts between pre-synaptic elements (axon terminals from cortical or thalamic sources) and post-synaptic elements (projection neurons and/or interneurons labeled with RV)

    Changes to interneuron-driven striatal microcircuits in a rat model of Parkinson's disease

    No full text
    Striatal interneurons play key roles in basal ganglia function and related disorders by modulating the activity of striatal projection neurons. Here we have injected rabies virus (RV) into either the rat substantia nigra pars reticulata or the globus pallidus and took advantage of the trans-synaptic spread of RV to unequivocally identify the interneurons connected to striatonigral- or striatopallidal-projecting neurons, respectively. Large numbers of RV-infected parvalbumin (PV+/RV+) and cholinergic (ChAT+/RV+) interneurons were detected in control conditions, and they showed marked changes following intranigral 6-hydroxydopamine injection. The number of ChAT+/RV+ interneurons innervating striatopallidal neurons increased concomitant with a reduction in the number of PV+/RV+ interneurons, while the two interneuron populations connected to striatonigral neurons were clearly reduced. These data provide the first evidence of synaptic reorganization between striatal interneurons and projection neurons, notably a switch of cholinergic innervation onto striatopallidal neurons, which could contribute to imbalanced striatal outflow in parkinsonian state

    Neuroanatomical tracing combined with in situ hybridization: analysis of gene expression patterns within brain circuits of interest

    No full text
    Most of our current understanding of brain circuits is based on hodological studies carried out using neuroanatomical tract-tracing. Our aim is to advance one step further by visualizing the functional correlate in a given circuit. In this regard, we believe it is feasible to combine retrograde tracing with fluorescence, non-radioactive in situ hybridization (ISH) protocols. The subsequent detection at the single-cell level of the expression of a given mRNA within retrograde-labeled neurons provides information regarding cellular function. This may be of particular interest when trying to elucidate the performance of brain circuits of interest in animal models of brain diseases. Several combinations of retrograde tracing with either single- and double-ISH are presented here, together with some criteria that influence the selection of the tracer to be used in conjunction with the strong demands of the ISH

    The added value of rabies virus as a retrograde tracer when combined with dual anterograde tract-tracing

    No full text
    Rabies virus (RV) has widely been used as a trans-synaptic retrograde tracer to analyze chains of connected neurons. The use of antibodies directed against the viral nucleoprotein enables viral nucleocapsids to be visualized within the cell soma, as well as within the thickest main dendrites. However, through this approach it is often difficult to accurately define post-synaptic elements (thin dendrites and/or dendritic spines). This limitation can now easily been circumvented by taking advantage of antibodies directed against a soluble viral phosphoprotein that spreads throughout the cytoplasm of the infected neuron, thereby producing Golgi-like immunofluorescent labeling of first-order projection neurons that are infected with RV. Furthermore, when combined with anterograde tracers such as Phaseolus vulgaris-leucoagglutinin (PHA-L) and biotinylated dextran amine (BDA), this procedure to detect RV facilitates the accurate visualization of both the pre- and post-synaptic elements. Finally, this method of viral detection is sufficiently sensitive to detect weakly labeled second-order neurons, which can then be further characterized neurochemically. Several examples are provided to illustrate why retrograde trans-synaptic tracing using RV can be regarded as an important breakthrough in the analysis of brain circuits, providing an unprecedented level of resolution

    The added value of rabies virus as a retrograde tracer when combined with dual anterograde tract-tracing

    No full text
    Rabies virus (RV) has widely been used as a trans-synaptic retrograde tracer to analyze chains of connected neurons. The use of antibodies directed against the viral nucleoprotein enables viral nucleocapsids to be visualized within the cell soma, as well as within the thickest main dendrites. However, through this approach it is often difficult to accurately define post-synaptic elements (thin dendrites and/or dendritic spines). This limitation can now easily been circumvented by taking advantage of antibodies directed against a soluble viral phosphoprotein that spreads throughout the cytoplasm of the infected neuron, thereby producing Golgi-like immunofluorescent labeling of first-order projection neurons that are infected with RV. Furthermore, when combined with anterograde tracers such as Phaseolus vulgaris-leucoagglutinin (PHA-L) and biotinylated dextran amine (BDA), this procedure to detect RV facilitates the accurate visualization of both the pre- and post-synaptic elements. Finally, this method of viral detection is sufficiently sensitive to detect weakly labeled second-order neurons, which can then be further characterized neurochemically. Several examples are provided to illustrate why retrograde trans-synaptic tracing using RV can be regarded as an important breakthrough in the analysis of brain circuits, providing an unprecedented level of resolution

    Expression of the mRNA coding the cannabinoid receptor 2 in the pallidal complex of Macaca fascicularis

    No full text
    The putative presence of the cannabinoid receptor type 2 (CB(2)-R) in the central nervous system is still a matter of debate. Although first described in peripheral and immune tissues, evidence suggesting the existence of CB(2)-Rs in glial cells and even neurons has been made available more recently. By taking advantage of newly designed CB(2)-R mRNA riboprobes, we have demonstrated by in situ hybridization and PCR the existence of CB2-R transcripts in a variety of brain areas of the primate Macaca fascicularis, including the cerebral cortex and the hippocampus, as well as in the external and internal divisions of the globus pallidus, both pallidal segments showing the highest abundance of CB(2)-R transcripts. In this regard, the presence of the messenger coding CB(2)-Rs within the pallidal complex highlights their consideration as potential targets for the treatment of movement disorders of basal ganglia origin

    The search for a role of the caudal intralaminar nuclei in the pathophysiology of Parkinson's disease

    No full text
    The situation of the caudal intralaminar thalamic nuclei within basal ganglia circuits has gained increased attention over the past few years. Although initially considered as a "non-specific" thalamic nuclei, tract-tracing studies carried out over the past two decades have demonstrated that the centromedian-parafascicular thalamic complex (CM-Pf) is connected to virtually all basal ganglia components and related nuclei. Although the anatomical basis sustaining the thalamic modulation of basal ganglia circuits has long been characterized, the functional significance of these transverse circuits still remain to be properly accommodated within the basal ganglia model, both under normal conditions as well as in situations of dopaminergic depletion. However, the recent demonstration of primary (e.g., non-dopamine related) neurodegenerative phenomena restricted to the CM-Pf in Parkinson's disease (PD) has renewed interest in the role played by the caudal intralaminar nuclei in the pathophysiology of PD. Concomitantly, evidence has become available of increased metabolic activity in the caudal intralaminar nuclei in rodent models of PD. Finally, CM-Pf neurosurgery in patients suffering from PD has produced contrasting outcomes, indicating that a consensus is still to be reached regarding the potential usefulness of targeting the caudal intralaminar nuclei to treat movement disorders of basal ganglia origin
    corecore