Neuroanatomical tracing combined with in situ hybridization: analysis of gene expression patterns within brain circuits of interest

Abstract

Most of our current understanding of brain circuits is based on hodological studies carried out using neuroanatomical tract-tracing. Our aim is to advance one step further by visualizing the functional correlate in a given circuit. In this regard, we believe it is feasible to combine retrograde tracing with fluorescence, non-radioactive in situ hybridization (ISH) protocols. The subsequent detection at the single-cell level of the expression of a given mRNA within retrograde-labeled neurons provides information regarding cellular function. This may be of particular interest when trying to elucidate the performance of brain circuits of interest in animal models of brain diseases. Several combinations of retrograde tracing with either single- and double-ISH are presented here, together with some criteria that influence the selection of the tracer to be used in conjunction with the strong demands of the ISH

    Similar works

    Full text

    thumbnail-image

    Available Versions