3 research outputs found

    Mutations in a gene encoding a novel protein tyrosine phosphatase cause progressive myoclonus epilepsy

    No full text
    Lafora's disease (LD; OMIM 254780) is an autosomal recessive form of progressive myoclonus epilepsy characterized by seizures and cumulative neurological deterioration. Onset occurs during late childhood and usually results in death within ten years of the first symptoms1,2. With few exceptions, patients follow a homogeneous clinical course despite the existence of genetic heterogeneity3. Biopsy of various tissues, including brain, revealed characteristic polyglucosan inclusions called Lafora bodies4-8, which suggested LD might be a generalized storage disease6,9. Using a positional cloning approach, we have identified at chromosome 6q24 a novel gene, EPM2A, that encodes a protein with consensus amino acid sequence indicative of a protein tyrosine phosphatase (PTP). mRNA transcripts representing alternatively spliced forms of EPM2A were found in every tissue examined, including brain. Six distinct DNA sequence variations in EPM2A in nine families, and one homozygous microdeletion in another family, have been found to cosegregate with LD. These mutations are predicted to cause deleterious effects in the putative protein product, named laforin, resulting in LD.link_to_subscribed_fulltex

    Frequency of spinocerebellar ataxia type 1, dentatorubropallidoluysian atrophy, and Machado-Joseph disease mutations in a large group of spinocerebellar ataxia patients

    No full text
    The spinocerebellar ataxias (SCAs) are a heterogeneous group of neurodegenerative disorders varying in both clinical manifestations and mode of inheritance. Six different genes causing autosomal dominant SCA are mapped: SCAI, SCA2, Machado-Joseph disease (MJD)/SCA3, SCA4, SCA5, and dentatorubropallidoluysian atrophy (DRPLA). Expansions of an unstable trinucleotide CAG repeat cause three of these disorders: SCA type 1 (SCA1), MJD, and DRPLA. We determined the frequency of the SCAI, DRPLA, and MJD mutations in a large group of unrelated SCA patients with various patterns of inheritance and different ethnic backgrounds. We studied 92 unrelated SCA patients. The frequency of the SCAI mutation was 3% in the overall patient group and 10% in the non-Portuguese dominantly inherited SCA subgroup. We found the DRPLA mutation in only one Japanese patient, who was previously diagnosed with this disease. We identified the MJD mutation in 41% of the overall patient group, which included 38 autosomal dominant kindreds of Portuguese origin; the frequency of the MJD mutation among the non-Portuguese dominantly inherited cases was 17%. These results suggest that SCA may be occasionally caused by the SCAI mutation and rarely caused by the DRPLA mutation and that, to date, the MJD mutation seems to be the most common cause of dominantly inherited SCA. Finally, our results suggest that recessively inherited cases of SCA are not caused by the known trinucleotide repeat expansions.o TEXTO COMPLETO DESTE ARTIGO, ESTARÁ DISPONÍVEL À PARTIR DE AGOSTO DE 2015.46121421

    Subcortical band heterotopia (SBH) in males: clinical, imaging and genetic findings in comparison with females

    No full text
    Subcortical band heterotopia (SBH) or double cortex syndrome is a neuronal migration disorder, which occurs very rarely in males: to date, at least 110 females but only 11 in males have been reported. The syndrome is usually associated with mutations in the doublecortin (DCX) (Xq22.3-q23) gene, and much less frequently in the LIS1 (17p13.3) gene. To determine whether the phenotypic spectrum, the genetic basis and genotype-phenotype correlations of SBH in males are similar to those in females, we compared the clinical, imaging and molecular features in 30 personally evaluated males and 60 previously reported females with SBH. Based on the MRI findings, we defined the following band subtypes: partial, involving one or two cerebral lobes; intermediate, involving two lobes and a portion of a third; diffuse, with substantial involvement of three or more lobes; and pachygyria-SBH, in which posterior SBH merges with anterior pachygyria. Karyo typing and mutation analysis of DCX and/or LIS1 were performed in 23 and 24 patients, respectively. The range of clinical phenotypes in males with SBH greatly overlapped that in females. MRI studies revealed that some anatomical subtypes of SBH, such as partial and intermediate posterior, pachygyria-SBH and diffuse bands with posterior predominance, were more frequently or exclusively present in males. Conversely, classical diffuse SBH and diffuse bands with anterior predominance were more frequent in females. Males had either mild or the most severe band subtypes, and these correlated with the over-representation of normal/borderline intelligence and severe mental retardation, respectively. Conversely, females who had predominantly diffuse bands exhibited mostly mild or moderate mental retardation. Seven patients (29%) had missense mutations in DCX; in four, these were germline mutations, whereas in three there was evidence for somatic mosaicism. A germline missense mutation of LIS1 and a partial trisomy of chromosome 9p were identified in one patient (4%) each. One male each had a possible pathogenic intronic base change in both DCX and LIS1 genes. Our study shows that SBH in males is a clinically heterogeneous syndrome, mostly occurring sporadically. The clinical spectrum is similar to that of females with SBH. However, the greater cognitive and neuroradiological heterogeneity and the small number of mutations identified to date in the coding sequences of the DCX and LIS1 genes in males differ from the findings in females. This suggests other genetic mechanisms such as mutations in the non-coding regions of the DCX or LIS1 genes, gonadal or somatic mosaicism, and finally mutations of other gene
    corecore