60 research outputs found

    CFTR interactome mapping using the mammalian membrane two-hybrid high-throughput screening system

    Get PDF
    Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a chloride and bicarbonate channel in secretory epithelia with a critical role in maintaining fluid homeostasis. Mutations in CFTR are associated with Cystic Fibrosis (CF), the most common lethal autosomal recessive disorder in Caucasians. While remarkable treatment advances have been made recently in the form of modulator drugs directly rescuing CFTR dysfunction, there is still considerable scope for improvement of therapeutic effectiveness. Here, we report the application of a high-throughput screening variant of the Mammalian Membrane Two-Hybrid (MaMTH-HTS) to map the protein-protein interactions of wild-type (wt) and mutant CFTR (F508del), in an effort to better understand CF cellular effects and identify new drug targets for patient-specific treatments. Combined with functional validation in multiple disease models, we have uncovered candidate proteins with potential roles in CFTR function/CF pathophysiology, including Fibrinogen Like 2 (FGL2), which we demonstrate in patient-derived intestinal organoids has a significant effect on CFTR functional expression

    Utilização de células-tronco derivadas da medula óssea: terapia viável para doenças pulmonares obstru tivas crônicas?

    Get PDF
    Doenças pulmonares obstrutivas crônicas acarretam em redução na qualidade de vida dos portadores e altos gastos aosistema público de saúde. Na maioria dos casos, o tratamento destas enfermidades envolve apenas medidas paliativas, oque as tornam grandes alvos de pesquisa com terapia celular. As células-tronco têm capacidade de se diferenciar em todosos tecidos que compõem o organismo devido à plasticidade, e sua ação na regeneração tecidual é comprovada apesar domecanismo não estar totalmente elucidado. Células-tronco foram, em princípio, pesquisadas como panacéias para doençasneurológicas, cardiovasculares e diabetes. Os resultados favoráveis à utilização dessa terapia nestes sistemas impulsionarampesquisas em doenças pulmonares obstrutivas crônicas, como enfisema, fibrose cística e fibrose pulmonar idiopática

    Silicose: mecanismos de atuação da partícula de sílica no tecido pulmonar

    Get PDF
    Inhalation of silica particles leads to an exacerbated inflammatory process with formation of granulomas andcollagen deposition in the lung parenchyma. Silicosis is a fibrosing disease, progressive and irreversible, leading theindividual died due to respiratory failure. There are several mechanisms by which the particle silica exerts its toxicity,causing injury to the lung tissue, and the principal described: a direct cytotoxicity, activation of oxidant generation,stimulation of secretion of cytokines and chemokines, stimulating the secretion of fibrogenic factors and cell deathby apoptosis. Although silicosis is preventable, no effective treatment to minimize the deleterious effects of same.This review elucidates the major mechanisms by which silicosis develops, in order to develop an effective therapy.A inalação da partícula de sílica leva a um processo inflamatório exacerbado, com formação de granulomas e deposição de colágeno no parênquima pulmonar. A silicose é uma doença fibrosante, progressiva e irreversível, que leva o indivíduo a óbito devido a falência respiratória. Existem diversos mecanismos pelos quais a partícula de sílica exerce sua toxicidade, causando lesão no tecido pulmonar, sendo os principais descritos: a citotoxicidade direta, ativação de geração de oxidantes, estimulação da secreção de citocinas e quimiocinas, estimulação da secreção de fatores fibrogênicos e morte celular por apoptose. Embora a silicose seja passível de prevenção, não há um tratamento eficiente para minimizar os efeitos deletérios da mesma. Esta revisão elucida os principais mecanismos pelos quais a silicose se desenvolve, com o intuito de elaborar uma terapia eficaz

    CFTR modulators: Shedding light on precision medicine for cystic fibrosis

    Get PDF
    Cystic fibrosis (CF) is the most common life-threatening monogenic disease afflicting Caucasian people. It affects the respiratory, gastrointestinal, glandular and reproductive systems. The major cause of morbidity and mortality in CF is the respiratory disorder caused by a vicious cycle of obstruction of the airways, inflammation and infection that leads to epithelial damage, tissue remodeling and end-stage lung disease. Over the past decades, life expectancy of CF patients has increased due to early diagnosis and improved treatments; however, these patients still present limited quality of life. Many attempts have been made to rescue CF transmembrane conductance regulator (CFTR) expression, function and stability, thereby overcoming the molecular basis of CF. Gene and protein variances caused by CFTR mutants lead to different CF phenotypes, which then require different treatments to quell the patients’ debilitating symptoms. In order to seek better approaches to treat CF patients and maximize therapeutic effects, CFTR mutants have been stratified into six groups (although several of these mutations present pleiotropic defects). The research with CFTR modulators (read-through agents, correctors, potentiators, stabilizers and amplifiers) has achieved remarkable progress, and these drugs are translating into pharmaceuticals and personalized treatments for CF patients. This review summarizes the main molecular and clinical features of CF, emphasizes the latest clinical trials using CFTR modulators, sheds light on the molecular mechanisms underlying these new and emerging treatments, and discusses the major breakthroughs and challenges to treating all CF patients

    Rescue of Mutant CFTR Trafficking Defect by the Investigational Compound MCG1516A

    No full text
    Although some therapeutic progress has been achieved in developing small molecules that correct F508del-CFTR defects, the mechanism of action (MoA) of these compounds remain poorly elucidated. Here, we investigated the effects and MoA of MCG1516A, a newly developed F508del-CFTR corrector. MCG1516A effects on wild-type (WT) and F508del-CFTR were assessed by immunofluorescence microscopy, and biochemical and functional assays both in cell lines and in intestinal organoids. To shed light on the MoA of MCG1516A, we evaluated its additivity to the FDA-approved corrector VX-661, low temperature, genetic revertants of F508del-CFTR (G550E, R1070W, and 4RK), and the traffic-null variant DD/AA. Finally, we explored the ability of MCG1516A to rescue trafficking and function of other CF-causing mutations. We found that MCG1516A rescues F508del-CFTR with additive effects to VX-661. A similar behavior was observed for WT-CFTR. Under low temperature incubation, F508del-CFTR demonstrated an additivity in processing and function with VX-661, but not with MCG1516A. In contrast, both compounds promoted additional effects to low temperature to WT-CFTR. MCG1516A demonstrated additivity to genetic revertant R1070W, while VX-661 was additive to G550E and 4RK. Nevertheless, none of these compounds rescued DD/AA trafficking. Both MCG1516A and VX-661 rescued CFTR processing of L206W- and R334W-CFTR with greater effects when these compounds were combined. In summary, the absence of additivity of MCG1516A to genetic revertant G550E suggests a putative binding site for this compound on NBD1:NBD2 interface. Therefore, a combination of MCG1516A with compounds able to rescue DD/AA traffic, or mimicking the actions of revertant R1070W (e.g., VX-661), could enhance correction of F508del-CFTR defects

    Cell-Based Therapy for Silicosis

    No full text
    Silicosis is the most common pneumoconiosis globally, with higher prevalence and incidence in developing countries. To date, there is no effective treatment to halt or reverse the disease progression caused by silica-induced lung injury. Significant advances have to be made in order to reduce morbidity and mortality related to silicosis. In this review, we have highlighted the main mechanisms of action that cause lung damage by silica particles and summarized the data concerning the therapeutic promise of cell-based therapy for silicosis

    Organic Synthesis and Current Understanding of the Mechanisms of CFTR Modulator Drugs Ivacaftor, Tezacaftor, and Elexacaftor

    No full text
    The monogenic rare disease Cystic Fibrosis (CF) is caused by mutations in the gene encoding the CF transmembrane conductance (CFTR) protein, an anion channel expressed at the apical plasma membrane of epithelial cells. The discovery and subsequent development of CFTR modulators—small molecules acting on the basic molecular defect in CF—have revolutionized the standard of care for people with CF (PwCF), thus drastically improving their clinical features, prognosis, and quality of life. Currently, four of these drugs are approved for clinical use: potentiator ivacaftor (VX-770) alone or in combination with correctors lumacaftor, (VX-809), tezacaftor (VX-661), and elexacaftor (VX-445). Noteworthily, the triple combinatorial therapy composed of ivacaftor, tezacaftor, and elexacaftor constitutes the most effective modulator therapy nowadays for the majority of PwCF. In this review, we exploit the organic synthesis of ivacaftor, tezacaftor, and elexacaftor by providing a retrosynthetic drug analysis for these CFTR modulators. Furthermore, we describe the current understanding of the mechanisms of action (MoA’s) of these compounds by discussing several studies that report the key findings on the molecular mechanisms underlying their action on the CFTR protein

    Oxidative Stress-Derived Mitochondrial Dysfunction in Chronic Obstructive Pulmonary Disease: A Concise Review

    No full text
    Chronic obstructive pulmonary disease (COPD) is a progressive and disabling disorder marked by airflow limitation and extensive destruction of lung parenchyma. Cigarette smoke is the major risk factor for COPD development and has been associated with increased oxidant burden on multiple cell types in the lungs. Elevated levels of reactive oxygen species (ROS) may significantly affect expression of biological molecules, signaling pathways, and function of antioxidant defenses. Although inflammatory cells, such as neutrophils and macrophages, contribute to the release of large quantities of ROS, mitochondrial dysfunction plays a critical role in ROS production due to oxidative phosphorylation. Although mitochondria are dynamic organelles, excess oxidative stress is able to alter mitochondrial function, morphology, and RNA and protein content. Indeed, mitochondria may change their shape by undergoing fusion (regulated by mitofusin 1, mitofusin 2, and optic atrophy 1 proteins) and fission (regulated by dynamin-related protein 1), which are essential processes to maintain a healthy and functional mitochondrial network. Cigarette smoke can induce mitochondrial hyperfusion, thus reducing mitochondrial quality control and cellular stress resistance. Furthermore, diminished levels of enzymes involved in the mitophagy process, such as Parkin (a ubiquitin ligase E3) and the PTEN-induced putative kinase 1 (PINK1), are commonly observed in COPD and correlate directly with faulty removal of dysfunctional mitochondria and consequent cell senescence in this disorder. In this review, we highlight the main mechanisms for the regulation of mitochondrial quality and how they are affected by oxidative stress during COPD development and progression

    Rescue of NBD2 mutants N1303K and S1235R of CFTR by small-molecule correctors and transcomplementation.

    No full text
    Although, the most common Cystic Fibrosis mutation, ΔF508, in the cystic fibrosis transmembrane regulator. (CFTR), is located in nucleotide binding domain (NBD1), disease-causing mutations also occur in NBD2. To provide information on potential therapeutic strategies for mutations in NBD2, we studied, using a combination of biochemical approaches and newly created cell lines, two disease-causing NBD2 mutants, N1303K and S1235R. Surprisingly, neither was rescued by low temperature. Inhibition of proteasomes with MG132 or aggresomes with tubacin rescued the immature B and mature C bands of N1303K and S1235R, indicating that degradation occurs via proteasomes and aggresomes. We found no effect of the lysosome inhibitor E64. Thus, our results show that these NBD2 mutants are processing mutants with unique characteristics. Several known correctors developed to rescue ΔF508-CFTR, when applied either alone or in combination, significantly increased the maturation of bands B and C of both NBD 2 mutants. The best correction occurred with the combinations of C4 plus C18 or C3 plus C4. Co-transfection of truncated CFTR (∆27-264) into stably transfected cells was also able to rescue them. This demonstrates for the first time that transcomplementation with a truncated version of CFTR can rescue NBD2 mutants. Our results show that the N1303K mutation has a more profound effect on NBD2 processing than S1235R and that small-molecule correctors increase the maturation of bands B and C in NBD2 mutants. In addition, ∆27-264 was able to transcomplement both NDB2 mutants. We conclude that differences and similarities occur in the impact of mutations on NBD2 when compared to ΔF508-CFTR suggesting that individualized strategies may be needed to restore their function. Finally our results are important because they suggest that gene or corrector molecule therapies either alone or in combination individualized for NBD2 mutants may be beneficial for patients bearing N1303K or S1235R mutations
    • …
    corecore