5,450 research outputs found

    No entropy enigmas for N=4 dyons

    Get PDF
    We explain why multi-centered black hole configurations where at least one of the centers is a large black hole do not contribute to the indexed degeneracies in theories with N=4 supersymmetry. This is a consequence of the fact that such configurations, although supersymmetric, belong to long supermultiplets. As a result, there is no entropy enigma in N=4 theories, unlike in N=2 theories.Comment: 14 page

    Discrete Information from CHL Black Holes

    Get PDF
    AdS_2/CFT_1 correspondence predicts that the logarithm of a Z_N twisted index over states carrying a fixed set of charges grows as 1/N times the entropy of the black hole carrying the same set of charges. In this paper we verify this explicitly by calculating the microscopic Z_N twisted index for a class of states in the CHL models. This demonstrates that black holes carry more information about the microstates than just the total degeneracy.Comment: LaTeX file, 24 pages; v2: references adde

    Counting all dyons in N =4 string theory

    Get PDF
    For dyons in heterotic string theory compactified on a six-torus, with electric charge vector Q and magnetic charge vector P, the positive integer I = g.c.d.(Q \wedge P) is an invariant of the U-duality group. We propose the microscopic theory for computing the spectrum of all dyons for all values of I, generalizing earlier results that exist only for the simplest case of I=1. Our derivation uses a combination of arguments from duality, 4d-5d lift, and a careful analysis of fermionic zero modes. The resulting degeneracy agrees with the black hole degeneracy for large charges and with the degeneracy of field-theory dyons for small charges. It naturally satisfies several physical requirements including integrality and duality invariance. As a byproduct, we also derive the microscopic (0,4) superconformal field theory relevant for computing the spectrum of five-dimensional Strominger-Vafa black holes in ALE backgrounds and count the resulting degeneracies

    Perturbative tests of non-perturbative counting

    Get PDF
    We observe that a class of quarter-BPS dyons in N=4 theories with charge vector (Q, P) and with nontrivial values of the arithmetic duality invariant I := gcd (Q wedge P) are nonperturbative in one frame but perturbative in another frame. This observation suggests a test of the recently computed nonperturbative partition functions for dyons with nontrivial values of the arithmetic invariant. For all values of I, we show that the nonperturbative counting yields vanishing indexed degeneracy for this class of states everywhere in the moduli space in precise agreement with the perturbative result.Comment: 10 pages, 0 figure

    A Twist in the Dyon Partition Function

    Get PDF
    In four dimensional string theories with N=4 and N=8 supersymmetries one can often define twisted index in a subspace of the moduli space which captures additional information on the partition function than the ones contained in the usual helicity trace index. We compute several such indices in type IIB string theory on K3 x T^2 and T^6, and find that they share many properties with the usual helicity trace index that captures the spectrum of quarter BPS states in N=4 supersymmetric string theories. In particular the partition function is a modular form of a subgroup of Sp(2,Z) and the jumps across the walls of marginal stability are controlled by the residues at the poles of the partition function. However for large charges the logarithm of this index grows as 1/n times the entropy of a black hole carrying the same charges where n is the order of the symmetry generator that is used to define the twisted index. We provide a macroscopic explanation of this phenomenon using quantum entropy function formalism. The leading saddle point corresponding to the attractor geometry fails to contribute to the twisted index, but a Z_n orbifold of the attractor geometry produces the desired contribution.Comment: LaTeX file, 35 pages; v2: references adde

    Non-Supersymmetric Stringy Attractors

    Full text link
    In this paper we examine the stability of non-supersymmetric attractors in type IIA supergravity compactified on a Calabi-Yau manifold, in the presence of sub-leading corrections to the N=$ pre-potential. We study black hole configurations carrying D0-D6 and D0-D4 charges. We consider the O(1) corrections to the pre-potential given by the Euler number of the Calabi-Yau manifold. We argue that such corrections in general can not lift the zero modes for the D0-D6 attractors. However, for the attractors carrying the D0-D4 charges, they affect the zero modes in the vector multiplet sector. We show that, in the presence of such O(1) corrections, the D0-D4 attractors can either be stable or unstable depending on the geometry of the underlying Calabi-Yau manifold, and on the specific values of the charges they carry.Comment: corrected typos, minor modification

    BKM Lie superalgebras from counting twisted CHL dyons

    Full text link
    Following Sen[arXiv:0911.1563], we study the counting of (`twisted') BPS states that contribute to twisted helicity trace indices in four-dimensional CHL models with N=4 supersymmetry. The generating functions of half-BPS states, twisted as well as untwisted, are given in terms of multiplicative eta products with the Mathieu group, M_{24}, playing an important role. These multiplicative eta products enable us to construct Siegel modular forms that count twisted quarter-BPS states. The square-roots of these Siegel modular forms turn out be precisely a special class of Siegel modular forms, the dd-modular forms, that have been classified by Clery and Gritsenko[arXiv:0812.3962]. We show that each one of these dd-modular forms arise as the Weyl-Kac-Borcherds denominator formula of a rank-three Borcherds-Kac-Moody Lie superalgebra. The walls of the Weyl chamber are in one-to-one correspondence with the walls of marginal stability in the corresponding CHL model for twisted dyons as well as untwisted ones. This leads to a periodic table of BKM Lie superalgebras with properties that are consistent with physical expectations.Comment: LaTeX, 32 pages; (v2) matches published versio

    Logarithmic Corrections to Extremal Black Hole Entropy from Quantum Entropy Function

    Get PDF
    We evaluate the one loop determinant of matter multiplet fields of N=4 supergravity in the near horizon geometry of quarter BPS black holes, and use it to calculate logarithmic corrections to the entropy of these black holes using the quantum entropy function formalism. We show that even though individual fields give non-vanishing logarithmic contribution to the entropy, the net contribution from all the fields in the matter multiplet vanishes. Thus logarithmic corrections to the entropy of quarter BPS black holes, if present, must be independent of the number of matter multiplet fields in the theory. This is consistent with the microscopic results. During our analysis we also determine the complete spectrum of small fluctuations of matter multiplet fields in the near horizon geometry.Comment: LaTeX file, 52 pages; v2: minor corrections, references adde

    A New Class of Four-Dimensional N=1 Supergravity with Non-minimal Derivative Couplings

    Full text link
    In the N=1 four-dimensional new-minimal supergravity framework, we supersymmetrise the coupling of the scalar kinetic term to the Einstein tensor. This coupling, although introduces a non-minimal derivative interaction of curvature to matter, it does not introduce harmful higher-derivatives. For this construction, we employ off-shell chiral and real linear multiplets. Physical scalars are accommodated in the chiral multiplet whereas curvature resides in a linear one.Comment: 18 pages, version published at JHE
    corecore