45,992 research outputs found

    Ergodic Transport Theory, periodic maximizing probabilities and the twist condition

    Full text link
    The present paper is a follow up of another one by A. O. Lopes, E. Oliveira and P. Thieullen which analyze ergodic transport problems. Our main focus will a more precise analysis of case where the maximizing probability is unique and is also a periodic orbit. Consider the shift T acting on the Bernoulli space \Sigma={1, 2, 3,.., d}^\mathbb{N} and and A:\Sigma \to \mathbb{R} a Holder potential. Denote m(A)=max_{\nu is an invariant probability for T} \int A(x) \; d\nu(x) and, \mu_{\infty,A}, any probability which attains the maximum value. We assume this probability is unique (a generic property). We denote \T the bilateral shift. For a given potential Holder A:\Sigma \to \mathbb{R}, we say that a Holder continuous function W: \hat{\Sigma} \to \mathbb{R} is a involution kernel for A, if there is a Holder function A^*:\Sigma \to \mathbb{R}, such that, A^*(w)= A\circ \T^{-1}(w,x)+ W \circ \T^{-1}(w,x) - W(w,x). We say that A^* is a dual potential of A. It is true that m(A)=m(A^*). We denote by V the calibrated subaction for A, and, V^* the one for A^*. We denote by I^* the deviation function for the family of Gibbs states for \beta A, when \beta \to \infty. For each x we get one (more than one) w_x such attains the supremum above. That is, solutions of V(x) = W(w_x,x) - V^* (w_x)- I^*(w_x). A pair of the form (x,w_x) is called an optimal pair. If \T is the shift acting on (x,w) \in {1, 2, 3,.., d}^\mathbb{Z}, then, the image by \T^{-1} of an optimal pair is also an optimal pair. Theorem - Generically, in the set of Holder potentials A that satisfy (i) the twist condition, (ii) uniqueness of maximizing probability which is supported in a periodic orbit, the set of possible optimal w_x, when x covers the all range of possible elements x in \in \Sigma, is finite

    Neural networks with dynamical synapses: from mixed-mode oscillations and spindles to chaos

    Full text link
    Understanding of short-term synaptic depression (STSD) and other forms of synaptic plasticity is a topical problem in neuroscience. Here we study the role of STSD in the formation of complex patterns of brain rhythms. We use a cortical circuit model of neural networks composed of irregular spiking excitatory and inhibitory neurons having type 1 and 2 excitability and stochastic dynamics. In the model, neurons form a sparsely connected network and their spontaneous activity is driven by random spikes representing synaptic noise. Using simulations and analytical calculations, we found that if the STSD is absent, the neural network shows either asynchronous behavior or regular network oscillations depending on the noise level. In networks with STSD, changing parameters of synaptic plasticity and the noise level, we observed transitions to complex patters of collective activity: mixed-mode and spindle oscillations, bursts of collective activity, and chaotic behaviour. Interestingly, these patterns are stable in a certain range of the parameters and separated by critical boundaries. Thus, the parameters of synaptic plasticity can play a role of control parameters or switchers between different network states. However, changes of the parameters caused by a disease may lead to dramatic impairment of ongoing neural activity. We analyze the chaotic neural activity by use of the 0-1 test for chaos (Gottwald, G. & Melbourne, I., 2004) and show that it has a collective nature.Comment: 7 pages, Proceedings of 12th Granada Seminar, September 17-21, 201

    Critical phenomena and noise-induced phase transitions in neuronal networks

    Get PDF
    We study numerically and analytically first- and second-order phase transitions in neuronal networks stimulated by shot noise (a flow of random spikes bombarding neurons). Using an exactly solvable cortical model of neuronal networks on classical random networks, we find critical phenomena accompanying the transitions and their dependence on the shot noise intensity. We show that a pattern of spontaneous neuronal activity near a critical point of a phase transition is a characteristic property that can be used to identify the bifurcation mechanism of the transition. We demonstrate that bursts and avalanches are precursors of a first-order phase transition, paroxysmal-like spikes of activity precede a second-order phase transition caused by a saddle-node bifurcation, while irregular spindle oscillations represent spontaneous activity near a second-order phase transition caused by a supercritical Hopf bifurcation. Our most interesting result is the observation of the paroxysmal-like spikes. We show that a paroxysmal-like spike is a single nonlinear event that appears instantly from a low background activity with a rapid onset, reaches a large amplitude, and ends up with an abrupt return to lower activity. These spikes are similar to single paroxysmal spikes and sharp waves observed in EEG measurements. Our analysis shows that above the saddle-node bifurcation, sustained network oscillations appear with a large amplitude but a small frequency in contrast to network oscillations near the Hopf bifurcation that have a small amplitude but a large frequency. We discuss an amazing similarity between excitability of the cortical model stimulated by shot noise and excitability of the Morris-Lecar neuron stimulated by an applied current.Comment: 15 pages, 9 figures. arXiv admin note: substantial text overlap with arXiv:1304.323
    corecore