27 research outputs found

    Cooperation and Competition Shape Ecological Resistance During Periodic Spatial Disturbance of Engineered Bacteria

    Get PDF
    Cooperation is fundamental to the survival of many bacterial species. Previous studies have shown that spatial structure can both promote and suppress cooperation. Most environments where bacteria are found are periodically disturbed, which can affect the spatial structure of the population. Despite the important role that spatial disturbances play in maintaining ecological relationships, it remains unclear as to how periodic spatial disturbances affect bacteria dependent on cooperation for survival. Here, we use bacteria engineered with a strong Allee effect to investigate how the frequency of periodic spatial disturbances affects cooperation. We show that at intermediate frequencies of spatial disturbance, the ability of the bacterial population to cooperate is perturbed. A mathematical model demonstrates that periodic spatial disturbance leads to a tradeoff between accessing an autoinducer and accessing nutrients, which determines the ability of the bacteria to cooperate. Based on this relationship, we alter the ability of the bacteria to access an autoinducer. We show that increased access to an autoinducer can enhance cooperation, but can also reduce ecological resistance, defined as the ability of a population to resist changes due to disturbance. Our results may have implications in maintaining stability of microbial communities and in the treatment of infectious diseases

    Predictive biology: modelling, understanding and harnessing microbial complexity

    No full text
    Predictive biology is the next great chapter in synthetic and systems biology, particularly for microorganisms. Tasks that once seemed infeasible are increasingly being realized such as designing and implementing intricate synthetic gene circuits that perform complex sensing and actuation functions, and assembling multi-species bacterial communities with specific, predefined compositions. These achievements have been made possible by the integration of diverse expertise across biology, physics and engineering, resulting in an emerging, quantitative understanding of biological design. As ever-expanding multi-omic data sets become available, their potential utility in transforming theory into practice remains firmly rooted in the underlying quantitative principles that govern biological systems. In this Review, we discuss key areas of predictive biology that are of growing interest to microbiology, the challenges associated with the innate complexity of microorganisms and the value of quantitative methods in making microbiology more predictable.Defence Threat Reduction Agency (Grant HDTRA1-15-1-0051

    Conjugation dynamics depend on both the plasmid acquisition cost and the fitness cost

    No full text
    Abstract Plasmid conjugation is a major mechanism responsible for the spread of antibiotic resistance. Plasmid fitness costs are known to impact long‐term growth dynamics of microbial populations by providing plasmid‐carrying cells a relative (dis)advantage compared to plasmid‐free counterparts. Separately, plasmid acquisition introduces an immediate, but transient, metabolic perturbation. However, the impact of these short‐term effects on subsequent growth dynamics has not previously been established. Here, we observed that de novo transconjugants grew significantly slower and/or with overall prolonged lag times, compared to lineages that had been replicating for several generations, indicating the presence of a plasmid acquisition cost. These effects were general to diverse incompatibility groups, well‐characterized and clinically captured plasmids, Gram‐negative recipient strains and species, and experimental conditions. Modeling revealed that both fitness and acquisition costs modulate overall conjugation dynamics, validated with previously published data. These results suggest that the hours immediately following conjugation may play a critical role in both short‐ and long‐term plasmid prevalence. This time frame is particularly relevant to microbiomes with high plasmid/strain diversity considered to be hot spots for conjugation

    Recovery time guides design of effective injection based regimen.

    No full text
    <p><b>(A) Dependence of the recovery time on the initial antibiotic concentration</b>. If the initial antibiotic concentration is too low, then the population will not be affected and its recovery time will be zero. However, after the initial antibiotic concentration is high enough, increasing the concentration results in an increase in the time it takes for a population to recover from a single dose. <b>(B) Predictive power of recovery time for the outcome of long-term periodic antibiotic dosing</b>. For each antibiotic concentration-period combination, we calculate the final population density after 100 antibiotic doses. Subplots demonstrate the outcomes for the first couple of doses of regimens using periods less than one recovery time (bacteria final density is below the defined threshold of 10<sup>-10</sup>) versus regimens using periods greater than one recovery time (bacteria final density returns to carrying capacity). <b>(C) Dependence of treatment efficiency on the antibiotic concentration and the dosing period</b>. Each combination using an antibiotic concentration with a recovery time > 0 (<i>a</i><sub>0</sub> > 0.5) and any period less than 1 recovery time can eventually eliminate the population. Different combinations will reduce the population density to a pre-defined threshold (10<sup>-10</sup>) with varying efficiency: the combination is more efficient if fewer doses are needed to reach the threshold. <i>a</i><sub>0</sub> < 0.5 could not clear the infection in 100 doses. <b>(D) Dependence of total antibiotic usage on the antibiotic concentration and dosing period</b>. The total usage is calculated as the antibiotic concentration multiplied by number of doses needed to reduce population density to a predefined threshold.</p

    Mechanism and dynamics of antibiotic-mediated death.

    No full text
    <p><b>(A) Antibiotic-mediated death</b>. Black represents bacterial actions, blue represents Bla actions, and red represents antibiotic actions. Arrows denote induction or activation; T-lines indicate inhibition; the dashed arrow represents the ability for the model to simulate inducible or constitutive Bla production. <b>(B) Typical time courses of bacterial density, antibiotic, and Bla after one dose of antibiotic treatment</b>. The antibiotic can cause cell lysis, which triggers the release of Bla into the environment. Sufficient degradation of the antibiotic by the Bla allows the surviving bacteria to recover. <b>(C) Collective tolerance</b>. A bacterial population can only recover from an antibiotic dose if enough bacteria are present for sufficient Bla to be produced.</p

    Potential use of recovery time to guide clinical practice.

    No full text
    <p>A critical step entails the construction of a comprehensive database of the recovery time curves of various pathogens under different antibiotics. Based on the recovery time curve, the optimal antibiotic concentration (X), dose number (Y), and period length (Z) can be calculated for each pathogen-antibiotic combination and entered into a database. Given this database and a proper diagnosis of a pathogen, one can readily identify the most effective treatment protocol.</p

    Phylogenomics of two ST1 antibiotic-susceptible non-clinical Acinetobacter baumannii strains reveals multiple lineages and complex evolutionary history in global clone 1

    No full text
    Acinetobacter baumannii is an opportunistic pathogen that is difficult to treat due to its resistance to extreme conditions, including desiccation and antibiotics. Most strains causing outbreaks around the world belong to two main global lineages, namely global clones 1 and 2 (GC1 and GC2). Here, we used a combination of Illumina short read and MinION (Oxford Nanopore) long-read sequence data with a hybrid assembly approach to complete the genome sequence of two antibiotic-sensitive GC1 strains, Ex003 and Ax270, recovered in Lebanon from water and a rectal swab of a cat, respectively. Phylogenetic analysis of Ax270 and Ex003 with 186 publicly available GC1 genomes revealed two major clades, including five main lineages (L1–L5), and four single-isolate lineages outside of the two clades. Ax270 and Ex003, along with AB307-0294 and MRSN7213 (both predicted antibiotic-susceptible isolates) represent these individual lineages. Antibiotic resistance islands and transposons interrupting the comM gene remain important features in L1–L5, with L1 associated with the AbaR-type resistance islands, L2 with AbaR4, L3 strains containing either AbaR4 or its variants as well as Tn6022::ISAba42, and L4 and L5 associated with Tn6022 or its variants. Analysis of the capsule (KL) and outer core (OCL) polysaccharide loci further revealed a complex evolutionary history probably involving many recombination events. As more genomes become available, more GC1 lineages continue to emerge. However, genome sequence data from more diverse geographical regions are needed to draw a more accurate population structure of this globally distributed clone.</p

    Bacterial metabolic state more accurately predicts antibiotic lethality than growth rate

    No full text
    © 2019, The Author(s), under exclusive licence to Springer Nature Limited. Growth rate and metabolic state of bacteria have been separately shown to affect antibiotic efficacy1–3. However, the two are interrelated as bacterial growth inherently imposes a metabolic burden4; thus, determining individual contributions from each is challenging5,6. Indeed, faster growth is often correlated with increased antibiotic efficacy7,8; however, the concurrent role of metabolism in that relationship has not been well characterized. As a result, a clear understanding of the interdependence between growth and metabolism, and their implications for antibiotic efficacy, are lacking9. Here, we measured growth and metabolism in parallel across a broad range of coupled and uncoupled conditions to determine their relative contribution to antibiotic lethality. We show that when growth and metabolism are uncoupled, antibiotic lethality uniformly depends on the bacterial metabolic state at the time of treatment, rather than growth rate. We further reveal a critical metabolic threshold below which antibiotic lethality is negligible. These findings were general for a wide range of conditions, including nine representative bactericidal drugs and a diverse range of Gram-positive and Gram-negative species (Escherichia coli, Acinetobacter baumannii and Staphylococcus aureus). This study provides a cohesive metabolic-dependent basis for antibiotic-mediated cell death, with implications for current treatment strategies and future drug development
    corecore