48 research outputs found

    Strain-Specific Liver Metabolite Profiles in Medaka

    Get PDF
    The relationship between genetic variation and phenotypic traits is often poorly understood since specific genotypes do not always easily translate into associated phenotypes, especially for complex disorders. The genetic background has been shown to affect metabolic pathways and thus contribute to variations in the metabolome. Here, we tested the suitability of NMR metabolomics for comparative analysis of fish lines as a first step towards phenotype-genotype association studies. The Japanese rice fish, medaka (Oryzias latipes), is a widely used genetic vertebrate model with several isogenic inbred laboratory strains. We used liver extracts of medaka iCab and HO5 strains as a paradigm to test the feasibility of distinguishing the metabolome of two different inbred strains. Fifteen metabolites could be detected in uni- and multivariate analyses that showed strain-specific levels. Differences could be assigned to specific metabolic pathways. Our results show that NMR spectroscopy is a suitable method to detect variance of the metabolome caused by subtle genetic differences. Thus, it has the potential to address genotype–phenotype associations in medaka, providing an additional level of phenotypic analysis

    Comparison of anxiety-like and social behaviour in medaka and zebrafish

    Get PDF
    The medaka, Oryzias latipes, is rapidly growing in importance as a model in behavioural research. However, our knowledge of its behaviour is still incomplete. In this study, we analysed the performance of medaka in 3 tests for anxiety-like behaviour (open-field test, scototaxis test, and diving test) and in 3 sociability tests (shoaling test with live stimuli, octagonal mirror test, and a modified shoaling test with mirror stimulus). The behavioural response of medaka was qualitatively similar to that observed in other teleosts in the open-field test (thigmotaxis), and in 2 sociability tests, the shoaling test and in the octagonal mirror test (attraction towards the social stimulus). In the remaining tests, medaka did not show typical anxiety (i.e., avoidance of light environments and preference for swimming at the bottom of the aquarium) and social responses (attraction towards the social stimulus). As a reference, we compared the behaviour of the medaka to that of a teleost species with well-studied behaviour, the zebrafish, tested under the same conditions. This interspecies comparison indicates several quantitative and qualitative differences across all tests, providing further evidence that the medaka responds differently to the experimental settings compared to other fish models

    The discovery, positioning and verification of a set of transcription-associated motifs in vertebrates

    Get PDF
    We have developed several new methods to investigate transcriptional motifs in vertebrates. We developed a specific alignment tool appropriate for regions involved in transcription control, and exhaustively enumerated all possible 12-mers for involvement in transcription by virtue of their mammalian conservation. We then used deeper comparative analysis across vertebrates to identify the active instances of these motifs. We have shown experimentally in Medaka fish that a subset of these predictions is involved in transcription

    A Whole Brain Staining, Embedding, and Clearing Pipeline for Adult Zebrafish to Visualize Cell Proliferation and Morphology in 3-Dimensions

    Get PDF
    The field of macro-imaging has grown considerably with the appearance of innovative clearing methods and confocal microscopes with lasers capable of penetrating increasing tissue depths. The ability to visualize and model the growth of whole organs as they develop from birth, or with manipulation, disease or injury, provides new ways of thinking about development, tissue-wide signaling, and cell-to-cell interactions. The zebrafish (Danio rerio) has ascended from a predominantly developmental model to a leading adult model of tissue regeneration. The unmatched neurogenic and regenerative capacity of the mature central nervous system, in particular, has received much attention, however tools to interrogate the adult brain are sparse. At present there exists no straightforward methods of visualizing changes in the whole adult brain in 3-dimensions (3-D) to examine systemic patterns of cell proliferation or cell populations of interest under physiological, injury, or diseased conditions. The method presented here is the first of its kind to offer an efficient step-by-step pipeline from intraperitoneal injections of the proliferative marker, 5-ethynyl-2′-deoxyuridine (EdU), to whole brain labeling, to a final embedded and cleared brain sample suitable for 3-D imaging using optical projection tomography (OPT). Moreover, this method allows potential for imaging GFP-reporter lines and cell-specific antibodies in the presence or absence of EdU. The small size of the adult zebrafish brain, the highly consistent degree of EdU labeling, and the use of basic clearing agents, benzyl benzoate, and benzyl alcohol, makes this method highly tractable for most laboratories interested in understanding the vertebrate central nervous system in health and disease. Post-processing of OPT-imaged adult zebrafish brains injected with EdU illustrate that proliferative patterns in EdU can readily be observed and analyzed using IMARIS and/or FIJI/IMAGEJ software. This protocol will be a valuable tool to unlock new ways of understanding systemic patterns in cell proliferation in the healthy and injured brain, brain-wide cellular interactions, stem cell niche development, and changes in brain morphology

    Long photoperiod impairs learning in male but not female medaka

    Get PDF
    Day length in conjunction with seasonal cycles affects many aspects of animal biology. We have studied photoperiod-dependent alterations of complex behavior in the teleost, medaka (Oryzias latipes), a photoperiodic breeder, in a learning paradigm whereby fish have to activate a sensor to obtain a food reward.Medaka were tested under a long (14:10 LD) and short (10:14 LD) photoperiod in three different groups:mixed-sex, all-males, and all-females. Under long photoperiod, medaka mixed-sex groups learned rapidly with a stable response. Unexpectedly, males-only groups showed a strong learning deficit, whereas females- only groups performed efficiently. In mixed-sex groups, female individuals drove group learning, whereas males apparently prioritized mating over feeding behavior resulting in strongly reduced learning performance. Under short photoperiod, wheremedaka do notmate,male performance improved to a level similar to that of females. Thus, photoperiod has sex-specific effects on the learning performance of a seasonal vertebrate

    Quantitative morphometric analysis of adult teleost fish by X-ray computed tomography

    Get PDF
    Vertebrate models provide indispensable paradigms to study development and disease. Their analysis requires a quantitative morphometric study of the body, organs and tissues. This is often impeded by pigmentation and sample size. X-ray micro-computed tomography (micro-CT) allows high-resolution volumetric tissue analysis, largely independent of sample size and transparency to visual light. Importantly, micro-CT data are inherently quantitative. We report a complete pipeline of high-throughput 3D data acquisition and image analysis, including tissue preparation and contrast enhancement for micro-CT imaging down to cellular resolution, automated data processing and organ or tissue segmentation that is applicable to comparative 3D morphometrics of small vertebrates. Applied to medaka fish, we first create an annotated anatomical atlas of the entire body, including inner organs as a quantitative morphological description of an adult individual. This atlas serves as a reference model for comparative studies. Using isogenic medaka strains we show that comparative 3D morphometrics of individuals permits identification of quantitative strain-specific traits. Thus, our pipeline enables high resolution morphological analysis as a basis for genotype-phenotype association studies of complex genetic traits in vertebrates

    A high-throughput chemically induced inflammation assay in zebrafish

    Get PDF
    Artículo de publicación ISIBackground: Studies on innate immunity have benefited from the introduction of zebrafish as a model system. Transgenic fish expressing fluorescent proteins in leukocyte populations allow direct, quantitative visualization of an inflammatory response in vivo. It has been proposed that this animal model can be used for high-throughput screens aimed at the identification of novel immunomodulatory lead compounds. However, current assays require invasive manipulation of fish individually, thus preventing high-content screening. Results: Here we show that specific, noninvasive damage to lateral line neuromast cells can induce a robust acute inflammatory response. Exposure of fish larvae to sublethal concentrations of copper sulfate selectively damages the sensory hair cell population inducing infiltration of leukocytes to neuromasts within 20 minutes. Inflammation can be assayed in real time using transgenic fish expressing fluorescent proteins in leukocytes or by histochemical assays in fixed larvae. We demonstrate the usefulness of this method for chemical and genetic screens to detect the effect of immunomodulatory compounds and mutations affecting the leukocyte response. Moreover, we transformed the assay into a high-throughput screening method by using a customized automated imaging and processing system that quantifies the magnitude of the inflammatory reaction. Conclusions: This approach allows rapid screening of thousands of compounds or mutagenized zebrafish for effects on inflammation and enables the identification of novel players in the regulation of innate immunity and potential lead compounds toward new immunomodulatory therapies. We have called this method the chemically induced inflammation assay, or ChIn assay.This work was supported by grants to MA from Fondecyt (1070867), FONDAP (15090007), ICM (P06-039F), CORFO-Innova (09MCSS-6705), DFG-Conicyt 075-2009; to CD from UNAB (DI- 01-09/1) and Fondecyt (24090004); to UL from Dopaminet (EU FP7 223744); and to CG by a Marie Curie International Reintegration Grant (EU FP7; PIRG07-GA-2010-267552)
    corecore