7,769 research outputs found
The uniform electron gas
The uniform electron gas or UEG (also known as jellium) is one of the most
fundamental models in condensed-matter physics and the cornerstone of the most
popular approximation --- the local-density approximation --- within
density-functional theory. In this article, we provide a detailed review on the
energetics of the UEG at high, intermediate and low densities, and in one, two
and three dimensions. We also report the best quantum Monte Carlo and
symmetry-broken Hartree-Fock calculations available in the literature for the
UEG and discuss the phase diagrams of jellium.Comment: 37 pages, 8 figures, 8 tables, accepted for publication in WIRES
Computational Molecular Scienc
Transport through a vibrating quantum dot: Polaronic effects
We present a Green's function based treatment of the effects of
electron-phonon coupling on transport through a molecular quantum dot in the
quantum limit. Thereby we combine an incomplete variational Lang-Firsov
approach with a perturbative calculation of the electron-phonon self energy in
the framework of generalised Matsubara Green functions and a Landauer-type
transport description. Calculating the ground-state energy, the dot
single-particle spectral function and the linear conductance at finite carrier
density, we study the low-temperature transport properties of the vibrating
quantum dot sandwiched between metallic leads in the whole electron-phonon
coupling strength regime. We discuss corrections to the concept of an
anti-adiabatic dot polaron and show how a deformable quantum dot can act as a
molecular switch.Comment: 10 pages, 8 figures, Proceedings of "Progress in Nonequilibrium
Green's Function IV" Conference, Glasgow 200
Exact energy of the spin-polarized two-dimensional electron gas at high density
We derive the exact expansion, to , of the energy of the high-density
spin-polarized two-dimensional uniform electron gas, where is the Seitz
radius.Comment: 7 pages, 1 figure and 1 table, submitted to Phys. Rev.
Genetic architecture and behavioral analysis of attention and impulsivity
Smit, A.B. [Promotor]Spijker, S. [Copromotor]Pattij, T. [Copromotor
Carrier-density effects in many-polaron systems
Many-polaron systems with finite charge-carrier density are often encountered
experimentally. However, until recently, no satisfactory theoretical
description of these systems was available even in the framework of simple
models such as the one-dimensional spinless Holstein model considered here. In
this work, previous results obtained using numerical as well as analytical
approaches are reviewed from a unified perspective, focussing on spectral
properties which reveal the nature of the quasiparticles in the system. In the
adiabatic regime and for intermediate electron-phonon coupling, a
carrier-density driven crossover from a polaronic to a rather metallic system
takes place. Further insight into the effects due to changes in density is
gained by calculating the phonon spectral function, and the fermion-fermion and
fermion-lattice correlation functions. Finally, we provide strong evidence
against the possibility of phase separation.Comment: 13 pages, 6 figures, accepted for publication in J. Phys.: Condens.
Matter; final versio
Chemistry in One Dimension
We report benchmark results for one-dimensional (1D) atomic and molecular
systems interacting via the Coulomb operator . Using various
wavefunction-type approaches, such as Hartree-Fock theory, second- and
third-order M{\o}ller-Plesset perturbation theory and explicitly correlated
calculations, we study the ground state of atoms with up to ten electrons as
well as small diatomic and triatomic molecules containing up to two electrons.
A detailed analysis of the 1D helium-like ions is given and the expression of
the high-density correlation energy is reported. We report the total energies,
ionization energies, electron affinities and other interesting properties of
the many-electron 1D atoms and, based on these results, we construct the 1D
analog of Mendeleev's periodic table. We find that the 1D periodic table
contains only two groups: the alkali metals and the noble gases. We also
calculate the dissociation curves of various 1D diatomics and study the
chemical bond in H, HeH, He, H, HeH and
He. We find that, unlike their 3D counterparts, 1D molecules are
primarily bound by one-electron bonds. Finally, we study the chemistry of
H and we discuss the stability of the 1D polymer resulting from an
infinite chain of hydrogen atoms.Comment: 27 pages, 7 figure
Correlation energy of two electrons in the high-density limit
We consider the high-density-limit correlation energy \Ec in
dimensions for the ground states of three two-electron systems: helium
(in which the electrons move in a Coulombic field), spherium (in which they
move on the surface of a sphere), and hookium (in which they move in a
quadratic potential). We find that the \Ec values are strikingly similar,
depending strongly on but only weakly on the external potential. We
conjecture that, for large , the limiting correlation energy \Ec \sim
-\delta^2/8 in any confining external potential, where .Comment: 4 pages, 0 figur
- …
