2,987 research outputs found

    Note on Moufang-Noether currents

    Full text link
    The derivative Noether currents generated by continuous Moufang tranformations are constructed and their equal-time commutators are found. The corresponding charge algebra turns out to be a birepresentation of the tangent Mal'ltsev algebra of an analytic Moufang loop.Comment: LaTeX2e, 6 pages, no figures, presented on "The XVth International Colloquium on Integrable Systems and Quantum Symmetries, Prague, 15-17 June, 2006

    Is there a Jordan geometry underlying quantum physics?

    Get PDF
    There have been several propositions for a geometric and essentially non-linear formulation of quantum mechanics. From a purely mathematical point of view, the point of view of Jordan algebra theory might give new strength to such approaches: there is a ``Jordan geometry'' belonging to the Jordan part of the algebra of observables, in the same way as Lie groups belong to the Lie part. Both the Lie geometry and the Jordan geometry are well-adapted to describe certain features of quantum theory. We concentrate here on the mathematical description of the Jordan geometry and raise some questions concerning possible relations with foundational issues of quantum theory.Comment: 30 page

    Division, adjoints, and dualities of bilinear maps

    Full text link
    The distributive property can be studied through bilinear maps and various morphisms between these maps. The adjoint-morphisms between bilinear maps establish a complete abelian category with projectives and admits a duality. Thus the adjoint category is not a module category but nevertheless it is suitably familiar. The universal properties have geometric perspectives. For example, products are orthogonal sums. The bilinear division maps are the simple bimaps with respect to nondegenerate adjoint-morphisms. That formalizes the understanding that the atoms of linear geometries are algebraic objects with no zero-divisors. Adjoint-isomorphism coincides with principal isotopism; hence, nonassociative division rings can be studied within this framework. This also corrects an error in an earlier pre-print; see Remark 2.11

    A CDCL-style calculus for solving non-linear constraints

    Get PDF
    In this paper we propose a novel approach for checking satisfiability of non-linear constraints over the reals, called ksmt. The procedure is based on conflict resolution in CDCL style calculus, using a composition of symbolical and numerical methods. To deal with the non-linear components in case of conflicts we use numerically constructed restricted linearisations. This approach covers a large number of computable non-linear real functions such as polynomials, rational or trigonometrical functions and beyond. A prototypical implementation has been evaluated on several non-linear SMT-LIB examples and the results have been compared with state-of-the-art SMT solvers.Comment: 17 pages, 3 figures; accepted at FroCoS 2019; software available at <http://informatik.uni-trier.de/~brausse/ksmt/

    Far Infrared Spectroscopy

    Get PDF
    Contains reports on five research projects

    FDEMS Sensing for Automated Intelligent Processing of PMR-15

    Get PDF
    The purpose of this grant was to develop frequency dependent dielectric measurements, often called FDEMS (frequency dependent electromagnetic sensing), to monitor and intelligently control the cure process in PMR-15, a stoichiometric mixture of a nadic ester, dimethyl ester, and methylendianiline in a monomor ratio

    SMT-based Model Checking for Recursive Programs

    Full text link
    We present an SMT-based symbolic model checking algorithm for safety verification of recursive programs. The algorithm is modular and analyzes procedures individually. Unlike other SMT-based approaches, it maintains both "over-" and "under-approximations" of procedure summaries. Under-approximations are used to analyze procedure calls without inlining. Over-approximations are used to block infeasible counterexamples and detect convergence to a proof. We show that for programs and properties over a decidable theory, the algorithm is guaranteed to find a counterexample, if one exists. However, efficiency depends on an oracle for quantifier elimination (QE). For Boolean Programs, the algorithm is a polynomial decision procedure, matching the worst-case bounds of the best BDD-based algorithms. For Linear Arithmetic (integers and rationals), we give an efficient instantiation of the algorithm by applying QE "lazily". We use existing interpolation techniques to over-approximate QE and introduce "Model Based Projection" to under-approximate QE. Empirical evaluation on SV-COMP benchmarks shows that our algorithm improves significantly on the state-of-the-art.Comment: originally published as part of the proceedings of CAV 2014; fixed typos, better wording at some place

    Space-time versus particle-hole symmetry in quantum Enskog equations

    Get PDF
    The non-local scattering-in and -out integrals of the Enskog equation have reversed displacements of colliding particles reflecting that the -in and -out processes are conjugated by the space and time inversions. Generalisations of the Enskog equation to Fermi liquid systems are hindered by a request of the particle-hole symmetry which contradicts the reversed displacements. We resolve this problem with the help of the optical theorem. It is found that space-time and particle-hole symmetry can only be fulfilled simultaneously for the Bruckner-type of internal Pauli-blocking while the Feynman-Galitskii form allows only for particle-hole symmetry but not for space-time symmetry due to a stimulated emission of Bosons

    Low-Temperature Spin Dynamics of Doped Manganites: roles of Mn-t2g and eg and O-2p states

    Full text link
    The low-temperature spin dynamics of doped manganites have been analyzed within a tight-binding model, the parameters of which are estimated by mapping the results of ab initio density functional calculations onto the model. This approach is found to provide a good description of the spin dynamics of the doped manganites, observed earlier within the ab initio calculations. Our analysis not only provides some insight into the roles of the eg and the t2g states but also indicates that the oxygen p states play an important role in the spin dynamics. This may cast doubt on the adaptability of the conventional model Hamiltonian approaches to the analysis of spin dynamics of doped manganites.Comment: 12 pages; Includes 5 figure
    corecore