2 research outputs found

    A theoretical evaluation of the impact of the type of reaction on heat production and material losses in biomass piles

    Get PDF
    Self-heating during storage of biomass in piles causes material losses, leads to emissions to air, and poses a risk of fire. There are different techniques to assess a biomass material's propensity for self-heating, some of these are briefly reviewed. One of these techniques is isothermal calorimetry, which measures thermal power from materials and produces time-resolved curves. A recently developed and published test standard, ISO 20049-1:2020, describes how the self-heating of pelletized biofuels can be determined by means of isothermal calorimetry and how thermal power and the total heat produced during the test should be measured by isothermal calorimetry. This paper supports interpretation of the result obtained by isothermal calorimetry; the mentioned standard provides examples of peak thermal power and total heat but does not provide any assistance on how the result from isothermal measurements should be interpreted or how the result from measurements on different samples could be compared. This paper addresses the impact of different types of reactions, peak thermal power, total heat released (heat of reaction), activation energy, heat conductivity, and pile size on the temperature development in a generic pile of biomass. This paper addresses important parameters when the result from isothermal calorimetry is evaluated. The most important parameter, with respect to temperature development in large piles, was found to be the total heat released. It was also proposed that safe storage times, that is, the time until a run-away of the temperature in the pile, could be ranked based on the time to the peak thermal power

    New energy carriers in vehicles and their impact on confined infrastructures Overview of previous research and research needs

    Get PDF
    International audienceThe global warming debate forces the vehicle industry to come up with new environmentally friendly solutions. In 10 years time, or even faster depending on the pressure from different governments in particular in Europe, vehicles will not only use gasoline, diesel and LPG, but also CNG, Hydrogen, ethanol, DME and other bio-fuels, as well as batteries and fuel cells. This quick development and the diversity of new energy carriers can jeopardize the safety in underground infrastructures such as tunnels or car parks. This can cause a major drawback in the adoption of new energy carriers as regulators or operators may prohibit use of these vehicles in underground systems if no new relevant measures will be taken. Unclear situation will also affect the implementation of international policies aiming at reducing the environmental footprint and especially CO2 emission in road traffic. The problem became clear after a workshop with the vehicle industry, tunnel operators, authorities, and safety experts organised in November 2008 by L-surF Services with the support of ITA-COSUF, ECTP and HYSAFE. This workshop demonstrated that the construction sector lacks appropriate design data and tools as well as knowledge to build safe underground infrastructure compatible with a diversity of new and alternative energy carriers. Vehicle industry, infrastructure operators and regulators have not yet addressed this problem. In a first part, an overview of the regulatory situation regarding safety and security of the admission of new energy carriers for vehicles in underground infrastructures is presented. Then, a detailed review of previous relevant research projects performed makes it possible to formulate recommendations in terms of a strategic research & development agenda. The overview shows that it is necessary to develop an integrated risk assessment and management method specific for underground transport systems, metros and hubs in confined spaces taking into account the "emerging risk" aspects
    corecore