72 research outputs found

    KASP-IEva: an intelligent typing evaluation model for KASP primers

    Get PDF
    KASP marker technology has been used in molecular marker-assisted breeding because of its high efficiency and flexibility, and an intelligent evaluation model of KASP marker primer typing results is essential to improve the efficiency of marker development on a large scale. To this end, this paper proposes a gene population delineation method based on NTC identification module and data distribution judgment module to improve the accuracy of K-Means clustering, and introduces a decision tree to construct the KASP-IEva primer typing evaluation model. The model firstly designs the NTC identification module and data distribution judgment module to extract four types of data, grouping and categorizing to achieve the improvement of the distinguishability of amplification product signals; secondly, the K-Means algorithm is used to aggregate and classify the data, to visualize the five aggregated clusters and to obtain the morphology location eigenvalues; lastly, the evaluation criteria for the typing effect level are constructed, and the logical decision tree is used to make conditional discrimination on the eigenvalues in order to realize the score prediction. The performance of the model was tested by the KASP marker typing test results of 2519 groups of cotton varieties, and the following conclusions were obtained: the model is able to visualize the aggregation and classification effects of the amplification products of NTC, pure genotypes, heterozygous genotypes, and untyped genotypes, enabling rapid and accurate KASP marker typing evaluation. Comparing and analyzing the model evaluation results with the expert evaluation results, the average accuracy rate of the four grades evaluated by the model was 87%, and the overall evaluation results showed an uneven distribution of the grades with significant differential characteristics. When evaluating 2519 KASP fractal maps, the expert evaluation consumes 15 hours, and the model evaluation only uses 8min27.45s, which makes the model intelligent evaluation significantly better than the expert evaluation from the perspective of time. The establishment of the model will further enhance the application of KASP markers in molecular marker-assisted breeding and provide technical support for the large-scale screening and identification of excellent genotypes

    Deep-Learning-Based Intelligent Intervehicle Distance Control for 6G-Enabled Cooperative Autonomous Driving

    Get PDF
    Research on the sixth-generation cellular networks (6G) is gaining huge momentum to achieve ubiquitous wireless connectivity. Connected autonomous vehicles (CAVs) is a critical vertical application for 6G, holding great potentials of improving road safety, road and energy efficiency. However, the stringent service requirements of CAV applications on reliability, latency, and high speed communications will present big challenges to 6G networks. New channel access algorithms and intelligent control schemes for connected vehicles are needed for 6G-supported CAV. In this article, we investigated 6G-supported cooperative driving, which is an advanced driving mode through information sharing and driving coordination. First, we quantify the delay upper bounds of 6G vehicle-to-vehicle (V2V) communications with hybrid communication and channel access technologies. A deep learning neural network is developed and trained for the fast computation of the delay bounds in real-time operations. Then, an intelligent strategy is designed to control the intervehicle distance for cooperative autonomous driving. Furthermore, we propose a Markov chain-based algorithm to predict the parameters of the system states, and also a safe distance mapping method to enable smooth vehicular speed changes. The proposed algorithms are implemented in the AirSim autonomous driving platform. Simulation results show that the proposed algorithms are effective and robust with safe and stable cooperative autonomous driving, which greatly improve the road safety, capacity, and efficiency

    A novel approach to pulmonary bronchial tree model construction and performance index study

    Get PDF
    The demand for respiratory disease and dynamic breathing studies has continuously driven researchers to update the pulmonary bronchial tree’s morphology model. This study aims to construct a bronchial tree morphology model efficiently and effectively with practical algorithms. We built a performance index system using failure branch rate, volume ratio, and coefficient of variation of terminal volumes to evaluate the model performance. We optimized the parameter settings and found the best options to build the morphology model, and we constructed a 14th-generation bronchial tree model with a decent performance index. The dimensions of our model closely matched published data from anatomic in vitro measurements. The proposed model is adjustable and computable and will be used in future dynamic breathing simulations and respiratory disease studies

    Protein phosphatase 5 and the tumor suppressor p53 down-regulate each other's activities in mice

    Get PDF
    Protein phosphatase 5 (PP5), a serine/threonine phosphatase, has a wide range of biological functions and exhibits elevated expression in tumor cells. We previously reported that pp5-deficient mice have altered ataxia-telangiectasia mutated (ATM)-mediated signaling and function. However, this regulation was likely indirect, as ATM is not a known PP5 substrate. In the current study, we found that pp5-deficient mice are hypersensitive to genotoxic stress. This hypersensitivity was associated with the marked up-regulation of the tumor suppressor tumor protein p53 and its downstream targets cyclin-dependent kinase inhibitor 1A (p21), MDM2 proto-oncogene (MDM2), and phosphatase and tensin homolog (PTEN) in pp5-deficient tissues and cells. These observations suggested that PP5 plays a role in regulating p53 stability and function. Experiments conducted with p53 +/- pp5 +/- or p53 +/- pp5 -/- mice revealed that complete loss of PP5 reduces tumorigenesis in the p53 +/- mice. Biochemical analyses further revealed that PP5 directly interacts with and dephosphorylates p53 at multiple serine/threonine residues, resulting in inhibition of p53-mediated transcriptional activity. Interestingly, PP5 expression was significantly up-regulated in p53-deficient cells, and further analysis of pp5 promoter activity revealed that p53 strongly represses PP5 transcription. Our results suggest a reciprocal regulatory interplay between PP5 and p53, providing an important feedback mechanism for the cellular response to genotoxic stress

    Author Correction: The flying spider-monkey tree fern genome provides insights into fern evolution and arborescence (Nature Plants, (2022), 8, 5, (500-512), 10.1038/s41477-022-01146-6)

    Get PDF
    Correction to: Nature Plantshttps://doi.org/10.1038/s41477-022-01146-6, published online 9 May 2022. In the version of the article initially published, Dipak Khadka, who collected the samples in Nepal, was thanked in the Acknowledgements instead of being listed as an author. His name and affiliation (GoldenGate International College, Tribhuvan University, Battisputali, Kathmandu, Nepal) have been added to the authorship in the HTML and PDF versions of the article

    The Role of the NLRP3 Inflammasome and Programmed Cell Death in Acute Liver Injury

    No full text
    Acute liver injury (ALI) is a globally important public health issue that, when severe, rapidly progresses to acute liver failure, seriously compromising the life safety of patients. The pathogenesis of ALI is defined by massive cell death in the liver, which triggers a cascade of immune responses. Studies have shown that the aberrant activation of the nod-like receptor protein 3 (NLRP3) inflammasome plays an important role in various types of ALI and that the activation of the NLRP3 inflammasome causes various types of programmed cell death (PCD), and these cell death effectors can in turn regulate NLRP3 inflammasome activation. This indicates that NLRP3 inflammasome activation is inextricably linked to PCD. In this review, we summarize the role of NLRP3 inflammasome activation and PCD in various types of ALI (APAP, liver ischemia reperfusion, CCl4, alcohol, Con A, and LPS/D-GalN induced ALI) and analyze the underlying mechanisms to provide references for future relevant studies

    Proteomic identification of differentially expressed proteins during alfalfa (Medicago sativa L.) flower development

    Get PDF
    Flower development, pollination, and fertilization are important stages in the sexual reproduction process of plants; they are also critical steps in the control of seed formation and development. During alfalfa (Medicago sativa L.) seed production, some distinct phenomena such as a low seed setting ratio, serious flower falling, and seed abortion commonly occur. However, the causes of these phenomena are complicated and largely unknown. An understanding of the mechanisms that regulate alfalfa flowering is important in order to increase seed yield. Hence, proteomic technology was used to analyze changes in protein expression during the stages of alfalfa flower development. Flower samples were collected at pre-pollination (S1), pollination (S2), and the post-pollination senescence period (S3). Twenty-four differentially expressed proteins were successfully identified, including 17 down-regulated in pollinated flowers, one up-regulated in pollinated and senesced flowers, and six up-regulated in senesced flowers. The largest proportions of the identified proteins were involved in metabolism, signal transduction, defense response, oxidation reduction, cell death, and programmed cell death (PCD). Their expression profiles demonstrated that energy metabolism, carbohydrate metabolism, and amino acid metabolism provided the nutrient foundation for pollination in alfalfa. Furthermore, there were three proteins involved in multiple metabolic pathways: dual specificity kinase splA-like protein (kinase splALs), carbonic anhydrase (CA), and NADPH: quinone oxidoreductase-like protein (NQOLs). Expression patterns of these proteins indicated that MAPK cascades regulated multiple processes, such as signal transduction, stress response, and cell death. PCD also played an important role in the alfalfa flower developmental process, and regulated both pollination and flower senescence. The current study sheds some light on protein expression profiles during alfalfa flower development and contributes to the understanding of the basic molecular mechanisms during the alfalfa flowering process. These results may offer insight into potential strategies for improving seed yield, quality, and stress tolerance in alfalfa

    The Role of the NLRP3 Inflammasome and Programmed Cell Death in Acute Liver Injury

    No full text
    Acute liver injury (ALI) is a globally important public health issue that, when severe, rapidly progresses to acute liver failure, seriously compromising the life safety of patients. The pathogenesis of ALI is defined by massive cell death in the liver, which triggers a cascade of immune responses. Studies have shown that the aberrant activation of the nod-like receptor protein 3 (NLRP3) inflammasome plays an important role in various types of ALI and that the activation of the NLRP3 inflammasome causes various types of programmed cell death (PCD), and these cell death effectors can in turn regulate NLRP3 inflammasome activation. This indicates that NLRP3 inflammasome activation is inextricably linked to PCD. In this review, we summarize the role of NLRP3 inflammasome activation and PCD in various types of ALI (APAP, liver ischemia reperfusion, CCl4, alcohol, Con A, and LPS/D-GalN induced ALI) and analyze the underlying mechanisms to provide references for future relevant studies
    • …
    corecore