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Protein phosphatase 5 (PP5), a serine/threonine phosphatase,
has a wide range of biological functions and exhibits elevated
expression in tumor cells. We previously reported that pp5-de-
ficient mice have altered ataxia-telangiectasia mutated (ATM)-
mediated signaling and function. However, this regulation was
likely indirect, as ATM is not a known PP5 substrate. In the
current study, we found that pp5-deficient mice are hypersensi-
tive to genotoxic stress. This hypersensitivity was associated
with the marked up-regulation of the tumor suppressor tumor
protein p53 and its downstream targets cyclin-dependent kinase
inhibitor 1A (p21), MDM2 proto-oncogene (MDM2), and phos-
phatase and tensin homolog (PTEN) in pp5-deficient tissues and
cells. These observations suggested that PP5 plays a role in reg-
ulating p53 stability and function. Experiments conducted with
p53�/�pp5�/� or p53�/�pp5�/� mice revealed that complete
loss of PP5 reduces tumorigenesis in the p53�/� mice. Biochem-
ical analyses further revealed that PP5 directly interacts with
and dephosphorylates p53 at multiple serine/threonine resi-
dues, resulting in inhibition of p53-mediated transcriptional
activity. Interestingly, PP5 expression was significantly up-reg-
ulated in p53-deficient cells, and further analysis of pp5 pro-
moter activity revealed that p53 strongly represses PP5 tran-
scription. Our results suggest a reciprocal regulatory interplay
between PP5 and p53, providing an important feedback mech-
anism for the cellular response to genotoxic stress.

Maintenance of genomic stability is critical for cell growth
and survival. Many genetic disorders, including most human

cancers, are associated with some form of genomic instability.
The tumor suppressor gene p53 is known to play a critical role
in the maintenance of genomic stability in response to various
cellular and genotoxic stress factors, including DNA cross-link-
ing agents (1), oxidative stress (2), UV/ionizing irradiation (3),
and persistent DNA damage (4). p53 is a transcription factor
that can repress or induce many genes in response to genotoxic
stress. Mdm2 is involved in an autoregulatory feedback loop
that down-regulates p53 upon the conclusion of DNA repair for
reentry into the cell cycle. Mdm2 functions in a ubiquitin ligase
complex that is important for nuclear export of p53 and even-
tual destabilization of p53.

Upon encountering genotoxic stress, the ataxia-telangiecta-
sia mutated (ATM)3/ATM and Rad3-related (ATR) kinases and
CHK1/2 kinases are activated and subsequently phosphorylate
p53. These phosphorylation events have been shown to prevent
the interaction between p53 and MDM2 and subsequently lead
to an increase in p53 protein level and activity (5, 6). In contrast
to the well studied mechanism of p53 phosphorylation, dephos-
phorylation of p53 remains poorly understood. Several protein
phosphatases, including protein phosphatase 2A (PP2A) (7–9),
protein phosphatase 1 (PP1) (10, 11), protein phosphatase 1D
(PPM1D; or Wip1) (12–14), and cell division cycle 14 (Cdc14)
(15), have previously been implicated in the regulation of p53
phosphorylation via their phosphatase activities. There are 18
serine and threonine residues in p53 (16) that are phosphory-
lated in response to genotoxic and nongenotoxic stress (16 –
18).PP2AcandephosphorylateSer-46(9),andWip1maydephos-
phorylate Ser-15 (12, 13) of p53. Ser-46 is responsible for the
induction of apoptotic genes and PTEN, whereas Ser-15 is asso-
ciated with cell cycle arrest and Mdm2 (19). However, p53
mutants lacking some of these phosphorylation sites do not
seem to overtly alter p53 function (20, 21), suggesting that the
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regulation of p53 phosphorylation is a highly complex event and
may require other posttranslational modifications to achieve sig-
nificant changes in biological activity (22).

Protein phosphatase 5 (PP5) is a serine/threonine phospha-
tase that contains a 34-amino-acid tetratricopeptide repeat
domain that is known to mediate protein–protein interactions
and serves as an autoinhibitory domain for the phosphatase
activity of PP5 (23). The catalytic domain of PP5 is similar to
those of other protein phosphatases, such as PP1, PP2A, and
PP2B (24). PP5 is ubiquitously expressed and is believed to have
multiple functions in several intracellular signaling networks,
including cell cycle regulation (25) and cellular stress responses
(26). Interestingly, several recent clinical studies have shown
that PP5 is up-regulated in breast cancers, and the human PP5
gene resides at a chromosomal region that is frequently ampli-
fied in osteosarcoma patients (27). In a xenograft model, a
2-fold increase in PP5 protein levels significantly enhanced the
growth rate of estrogen-dependent tumors (28). These studies
suggest an important role for PP5 in tumorigenesis. Addition-
ally, PP5 has been shown to be associated with several geno-
toxic stress–induced protein complex members, such as apo-
ptosis signal-regulating kinase 1 (29, 30), the DNA-dependent
Ser/Thr protein kinase DNA-PKcs (31), ATM/ATR (32–34),
Raf1 (35), and the glucocorticoid receptor (36 –38). Using a
gene knockdown approach in cultured cells, Honkanen and co-
workers (25, 39, 40) demonstrated that PP5 can act as a negative
regulator of p53 function; however, the molecular mechanism
by which PP5 regulates p53 function has not been closely
analyzed.

Previously, we generated pp5-deficient mice and showed that
pp5-deficient cells possess altered ATM-mediated signaling
and function (32). However, this regulation was likely indirect
as ATM is not known to be a PP5 substrate (41). In the current
study, we identified p53 as a strong candidate substrate of
PP5. Biochemical analyses demonstrated that PP5 was able to
directly interact with p53 and dephosphorylate this protein at
multiple Ser/Thr sites both in vitro and in vivo. p53 protein
levels were significantly elevated in pp5-deficient cells and tis-
sues and down-regulated in pp5-overexpressing cells compared
with the levels in the normal controls. Subsequent analysis fur-
ther demonstrated that hyperphosphorylation of p53 in pp5-
deficient cells stabilized p53. In addition, we also identified
two conserved putative p53-binding sites in the pp5 promoter
region. Chromatin immunoprecipitation (ChIP) and luciferase
assays confirmed that p53 is a potent transcriptional repressor of
PP5. Compound p53�/�pp5�/� mutant mice exhibited signifi-
cantly longer lifespans and later onset of tumorigenesis than mice
that were double heterozygous for both genes (p53�/�pp5�/�).
Collectively, our findings reveal a unique regulatory interplay
between PP5 and p53, which likely constitutes a novel positive
feedback mechanism involved in the cellular response to stress.

Results

Mice deficient in PP5 exhibit increased sensitivity to genotoxic
stress and up-regulation of p53 protein levels

Our previous studies suggested that pp5-deficient cells
exhibit defects in the G2/M cell cycle checkpoint in response to

DNA damage (32). To further explore the mechanism of this
phenomenon, we tested the biological response of the geno-
toxic reagent doxorubicin (DOX) using bone marrow low-den-
sity mononuclear (LDM) cells isolated from pp5-deficient
(knockout (KO)) and sex-matched wildtype (WT) littermate
mice. DOX was shown to be able to induce generation of super-
oxide and hydroxyl radicals, which can cause DNA oxidative
damage, which subsequently leads to eventual cell cycle arrest
and cellular apoptosis (42, 43). Using flow cytometry analysis,
we found that fewer than 5% of the KO or WT LDM cells were
apoptotic in the absence of DOX treatment (Fig. 1A). However,
the percentage of apoptotic KO cells increased dramatically
after DOX treatment (0.05 or 0.1 �g/ml; 12 h) compared with
similarly treated WT cells (21.26 � 0.49 and 41.94 � 8.64% in
PP5 KO cells versus 10.76 � 1.22 and 25.21 � 4.68% in WT
cells, p � 0.001) (Fig. 1A). The result indicated that pp5-defi-
cient bone marrow LDM cells are hypersensitive to DOX treat-
ment. p53 is regarded as a critical sensor for cell stress and an
important modulator of apoptosis in response to a range of
stimuli (44, 45). The stress-induced apoptosis in hematopoietic
progenitors is p53-dependent (46). To test whether PP5 is a
regulator of p53 function, we examined whether p53 expression
was altered in pp5-deficient LDM cells by Western blot analy-
sis, which showed that PP5 mutant bone marrow cells had sig-
nificantly higher p53 levels than the littermate controls (Fig.
1D). Next, we tested whether the increased cellular apoptosis
observed in pp5-deficient bone marrow cells in response to
DOX treatment was p53-dependent. RNA interference (RNAi)
was used to knock down p53 by transducing WT and KO pri-
mary bone marrow cells with a retrovirus (pMSCV-eGFP/sh-
p53) or a control virus carrying only eGFP (pMSCV-eGFP) (47).
Following transduction, cells were sorted for eGFP to enrich
the transduced cells and treated with DOX. Real-time quanti-
tative RT-PCR was used to confirm the p53 levels in the control
and p53 RNAi–treated cells along with the levels of the p53
downstream regulators MDM2 and p21. In both pp5-deficient
and WT cells, p53 levels were efficiently reduced by RNAi, and
this was accompanied by a reduction in MDM2 and p21 expres-
sion (Fig. 1C). We found that the increase in cell death in pp5-
deficient cells in response to DOX treatment was diminished
following p53 knockdown (Fig. 1B), further supporting the
hypothesis that p53 mediates the biological function of PP5 in
stress-induced apoptosis.

To understand the physiological relevance of the interplay
between PP5 and p53, an in vivo disease model of DOX-medi-
ated cardiotoxicity was used as DOX treatment increases heart
p53 protein levels and leads to cardiomyocyte atrophy (i.e.
reduced size of cardiomyocytes) (48). A loss-of-function p53
mutant effectively blocked this DOX-mediated cardiomyocyte
atrophy (48). To test whether PP5 mutant hearts were hyper-
sensitive to DOX, 20 mg/kg DOX was administered to
2-month-old pp5-deficient and WT littermate control mice for
7 days, and saline was used as a control treatment (48). Based on
the minimal diameters of the cardiomyocytes, we determined
that the baseline size of the cardiomyocytes in pp5-deficient
hearts was significantly smaller when compared with that in the
WT controls (11.68 � 0.54 �m in pp5-deficient cardiomyo-
cytes versus 12.57 � 0.28 �m in WT cardiomyocytes, n � 400

A regulatory interplay between PP5 and p53

J. Biol. Chem. (2018) 293(47) 18218 –18229 18219



randomly selected cardiomyocytes/three animal hearts, p �
0.01), and this was associated with a higher level of p53 in pp5-
deficient hearts than in WT hearts (Fig. 2, A and B). As pre-
dicted, DOX treatment was able to cause a significant reduction
in the minimal diameter of the cardiomyocytes in pp5-deficient
hearts compared with that in WT hearts (9.7 � 1.51% reduction
in pp5-deficient cardiomyocytes versus 7.7 � 1.23% reduction
in WT cardiomyocytes, n � 400 randomly selected cardiomyo-
cytes/three animal hearts, p � 0.05; Fig. 1, E and F). This finding
confirms the importance of PP5 in p53-mediated physiology.

In addition to the elevated p53 expression levels in bone mar-
row (Fig. 1D), we also evaluated p53 protein levels in adult and
embryonic tissues of WT and pp5-deficient mice, including the
thymus, spleen, heart, and liver. As observed in bone marrow
cells, p53 levels were significantly elevated in all the pp5-defi-
cient tissues examined (Fig. 2A). Similarly, mouse embryonic

fibroblasts (MEFs) isolated from pp5-deficient embryos (E12.5)
had significantly elevated levels of p53 compared with control
MEFs isolated from WT littermates (Fig. 2C). The phospho-
p53 Ser-15 levels were also elevated (Fig. 2C).

To determine whether the increased levels of p53 in pp5-
deficient mice enhanced the transcriptional activity, the
expression levels of the downstream targets MDM2 (49, 50),
PTEN (51), and p21 (52) were analyzed in thymus and heart
samples via Western blotting. pp5-deficient tissues consistently
exhibited higher levels of these p53 target genes than the WT
controls (Fig. 2B). Moreover, the p21, Mdm2, and Pten mRNA
levels in pp5-deficient MEFs were up-regulated compared with
the levels in the WT control cells (Fig. 2, E, F, and G). However,
the p53 mRNA levels were not altered in pp5-deficient cells
(Fig. 2D), indicating that the elevation in p53 protein levels was
likely due to the enhanced p53 stability in pp5-deficient cells.

Figure 1. Characterization of WT and PP5 KO mice after saline or DOX treatment. A, ablation of PP5 gives rise to bone marrow cells that are sensitive to
p53-dependent apoptosis. WT and PP5 KO bone marrow (BM) cells were treated with DOX (0.05 and 0.1 �g/ml) for 12 h and then stained with annexin V and
propidium iodide. Apoptotic cells (annexin V–positive cells) are indicated as a percentage of gated cells. Apoptotic cells are included in the graphical
representation, which represents three independent experiments. B, WT and PP5 KO bone marrow low-density mononuclear cells were isolated and trans-
duced with pMSCV or pMSCV-sh-p53. Following transduction, cells were sorted for eGFP using FACS to enrich for transduced cells, treated with DOX for 12 h,
and analyzed by flow cytometry. C, real-time quantitative RT-PCR revealed that the expression of p53 and its downstream targets MDM2 and p21 decreased
after sh-p53 transduction. sh-co, control. D, Western blot analysis showed the p53 expression levels in WT and PP5 KO bone marrow. E, sections from saline- or
doxorubicin-treated WT and PP5 KO hearts stained with Sirius Red/Fast Green (scale bars, 50 �m).cardiomyocyte F, cardiomyocyte minimal fiber diameter (�m)
measurements in WT and PP5 KO mice treated with saline or DOX. Values are presented as the mean � S.D. (error bars) using Student’s t test. * represents p �
0.05, ** represents p � 0.01, and *** represents p � 0.001.
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PP5 deficiency reduces tumorigenesis in heterozygous p53�/�

mice

Given that pp5-deficient mice exhibit increased p53 protein
levels, we hypothesized that the PP5–p53 interplay may play a
role in tumorigenesis. To test this hypothesis, we generated the
compound mutant mice p53�/�pp5�/� and p53�/�pp5�/�.
Both strains had one copy of p53, resulting in a moderate level
of p53 expression, and one or no copies of pp5, resulting in
moderate to no expression of PP5. Western blotting was used to
confirm the significantly higher expression levels of p53 in
p53�/�pp5�/� mice than in the pp5�/�p53�/� littermates
(Fig. 3A) in the thymus, brain, and liver. The lifespan of p53�/�

pp5�/� mice was significantly extended (Fig. 3B) with an
increase in median lifespan observed from days 257 to 379. Both
the p53�/�pp5�/� and p53�/�pp5�/� double mutant mice
presented malignant tumors; however, delayed tumor onset
was observed in p53�/�pp5�/� mice compared with p53�/�

pp5�/� mice (Table 1). Tumor types were analyzed and are
listed in Table S1. Therefore, the data further suggest that PP5
is a functional regulator of p53.

PP5 interacts with p53 and dephosphorylates phospho-p53 at
multiple Ser/Thr sites

Phosphorylation of p53 was shown to increase the stability of
the p53 protein (16). To test the hypothesis that PP5 acts
as a serine/threonine phosphatase that dephosphorylates p53,
HEK293T cell lysate was immunoprecipitated with an anti-p53
antibody, and the immunoprecipitates were incubated in the

absence or presence of purified PP5 for 30 min at 30 °C. Incu-
bation was followed by Western blot analysis using antibodies
that recognized specific phosphorylated residues in p53 (i.e.
Ser-9, Ser-15, Ser-20, Ser-37, and Ser-46). As shown in Fig. 4A,
we found that PP5 was able to dephosphorylate multiple sites in
p53 in vitro, namely Ser-15, Ser-20, and Ser-37. Interestingly,
we observed dephosphorylation at Ser-46, which is a site that is
important for the induction of apoptotic genes (53). In contrast,
the phosphatase Wip1 can dephosphorylate p53 at only Ser-15
(54). It was previously demonstrated that DNA-dependent pro-
tein kinase (DNA-PK) phosphorylates p53 at Ser-15 (55). We
directly tested whether PP5 could dephosphorylate DNA-PK–
induced phospho-p53 Ser-15. DNA-PK was first incubated
with purified p53 in kinase reaction buffer for 30 min. After
heating at 65 °C to inactivate the kinase, purified recombinant
PP5 was added to the reaction. The level of p53 phosphoryla-
tion was monitored by Western blot analysis using anti-phos-
pho-p53 (Ser-15) and anti-p53 antibodies. As shown in Fig. 4B,
phospho-p53 Ser-15 levels were dramatically reduced follow-
ing the addition of PP5. To further test the observed phenom-
enon in vivo, we transfected a constitutively active form of PP5
(PP5ca), which harbored a 13-amino-acid truncation at the C
terminus, into WT and pp5-deficient MEF cells. PP5ca expres-
sion reduced the relative levels of total p53 and phospho-p53 in
WT and pp5-deficient cells (Fig. 4C). Furthermore, Western
blot analysis of total p53 and phospho-p53 was performed in
transgenic mice overexpressing PP5ca. Our data demonstrated
that both total p53 and phospho-p53 levels were dramatically

Figure 2. p53 levels and activity were elevated in pp5-deficient mice. A, Western blot analyses show that p53 expression was significantly elevated in the
selected pp5-deficient tissues, thymus, spleen, heart, and liver. B, expression of the p53 target genes MDM2, PTEN, and p21 was increased in pp5-deficient
mouse thymus (Thy) and heart. C, total and phospho-p53 (Ser-15) were detected in WT pp5�/� MEF cells using anti-p53 and anti-Ser-15 p53 antibodies. D,
real-time quantitative RT-PCR indicated that the level of p53 mRNA remained unchanged in mutant MEF cells compared with the levels in the WT controls. p21
(E), Mdm2 (F), and Pten (G) mRNA levels were also increased in pp5-deficient MEF cells, as shown by real-time quantitative RT-PCR analysis of WT and pp5�/�

cells. Values are expressed as the means � S.D. (error bars) from three independent experiments. ** represents p � 0.01, and *** represents p � 0.001.
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reduced in the PP5ca transgenic mice compared with the levels
in the littermate nontransgenic control (Fig. 4D).

In addition, we performed both coimmunoprecipitation (co-
IP) and GSH S-transferase (GST) pulldown assays to determine
whether PP5 binds to p53. WT p53 was cotransfected with PP5
in H1299 cells. As shown in Fig. 4E, in the co-IP Western blot
assay, PP5 was pulled down by the p53 antibody. The GST pull-
down assay also demonstrated a direct interaction between PP5
and p53 (Fig. 4F). Taken together, our data suggest a novel
function for PP5 as a phosphatase that directly regulates p53
dephosphorylation at multiple residues.

It is known that p53 protein levels are primarily regulated via
various posttranslational modifications. Previously, the phos-
phorylation of p53 was thought to be associated with p53 sta-
bility and transcriptional activity (29, 30). N-terminal phos-
phorylation might interfere with the interaction of p53 with
MDM2, leading to stabilization of p53 (6, 56). For example, the
rate of degradation increased following a serine-to-alanine
mutation on residue 15 of human p53, preventing phosphory-
lation at this site (57). In response to various stress signals, p53
is phosphorylated by a series of kinases, such as ATM/ATR,
CHK1, and CHK2, which prolongs the p53 protein half-life
from minutes to hours (58). To determine whether the p53
half-life was similarly increased in pp5-deficient cells, we
treated WT and pp5-deficient MEF cells with cycloheximide
(CHX) to inhibit protein synthesis and examined the total p53
protein levels at various time points posttreatment (Fig. 4G). As
expected, the absence of PP5 significantly prolonged the half-
life of p53. The half-life of p53 in WT cells was �32 min but was
�56 min in PP5 KO cells (Fig. 4H). These data confirmed that
the stability of p53 increased in pp5-deficient cells.

PP5 expression is negatively regulated by p53

PP5 has been shown to be up-regulated in tumor cells (26,
59). In an effort to determine the underlying mechanism, a sur-
vey of potential transcriptional binding sites for the human and

mouse pp5 promoters was performed. Two conserved p53-
binding sites were identified within the pp5 promoter region
(Fig. 5A). p53 binds specifically to a consensus DNA sequence
consisting of two copies of the 10-bp motif 5�-(A/G)(A/G)(A/
G)C(A/T)(T/A)G(T/C)(T/C)(T/C)-3� separated by 0 –13 bp
(60). This sequence has been observed in many p53 regulatory
genes, including p21/Waf1, Mdm2, Bax, Gadd45, and Pcna. To
determine whether p53 can regulate PP5 expression, we com-
pared PP5 expression levels between WT and p53-deficient
MEFs by Western blotting. Our data showed that PP5 expres-
sion was up-regulated in p53-deficient MEFs compared with
the expression in WT cells (Fig. 5B). We also compared PP5
expression between WT and p53-deficient thymus and spleen.
As shown in Fig. 5C, the PP5 protein levels were also signifi-
cantly higher in the p53-deficient organs than in the WT
organs. To determine whether the up-regulation was due to the
increase in pp5 mRNA levels in p53 mutant cells, we analyzed
the mRNA expression level of pp5 in WT and KO livers using
quantitative RT-PCR. As shown in Fig. 5F, pp5 mRNA expres-
sion was significantly higher in the p53 mutant liver than in the
WT liver (Fig. 5F), which was consistent with the protein level
measurements (Fig. 5E). Furthermore, when p53 was trans-
fected into p53-deficient MEFs, the PP5 expression level was
greatly reduced (Fig. 5D). Taken together, these data suggest
that p53 acts as a negative regulator of PP5.

To determine whether p53 directly binds to the consensus
sites identified above in the pp5 promoter region, we performed
a ChIP assay using p53-overexpressing H1299 cells (a well
known human cell line that is deficient in endogenous p53). As
shown in Fig. 5G, p53-specific ChIP bands were readily ampli-
fied in anti-p53 immune complexes, and both consensus p53-
binding sites were detected by PCR analysis. To further confirm
the importance of the pp5 promoter region, 1.5 kb of the mouse
pp5 promoter was subcloned into the promoter-less luciferase
expression vector pGL3 (Promega). In parallel, H1299 cells
were cotransfected with pPP5-promoter-Luc plus GL4-Renilla
and either pcDNA-WT-p53, the pcDNA vector control, or
pcDNA-mutant-p53 (codon 173, GTG3GTA), which was
mutated in the DNA-binding domain. As shown in Fig. 5H, WT
p53 strongly repressed luciferase activity, but mutant p53
(codon 173, GTG3GTA) and the pcDNA vector control did
not exhibit similar repression. To further understand whether
this activity depended on p53-binding sites (Fig. 5A), a mutant

Figure 3. PP5 deficiency enhances survival in p53�/� mice. A, Western blot analyses showed that p53 expression was significantly elevated in pp5�/�

p53�/� tissues relative to the expression in pp5�/�p53�/� tissues. B, survival curves of pp5�/�p53�/� (n � 15) and pp5�/�p53�/� (n � 21) mouse cohorts.

Table 1
Distribution of mice studied for survival and tumor spectrum

Genotype
p53�/�pp5�/� p53�/�pp5�/�

Number of mice 15 21
Number of animals analyzed by necropsy 14 18
Animals with metastasis 11 (78%) 10 (55%)
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pp5 promoter–luciferase construct was generated that lacked
the p53-binding sites. The luciferase assay showed that the
repressive regulatory ability of p53 was lost after removal of the
p53-binding sites from the pp5 promoter (Fig. 5H). These data
suggested that p53 binds directly to the pp5 promoter and func-
tions as a negative regulator of pp5 transcription.

Discussion

In this study, we report the discovery of a novel PP5–p53
interplay with implications for p53-mediated apoptosis and
tumorigenesis. Both bone marrow LDM cells and cardiomyo-
cytes from pp5-deficient mice were studied and found to be
hypersensitive to DOX treatment. Interestingly, p53 expression
was significantly elevated in various tissues of pp5-deficient
mice, indicating the importance of PP5 in disease development.

Using an siRNA interference approach to knock down p53, we
showed, for the first time, that p53 mediates the biological func-
tion of PP5 in stress-induced apoptosis. Consistent with ele-
vated p53 expression in pp5-deficient mice, the p53 down-
stream genes p21 and Pten were significantly up-regulated in
terms of mRNA and protein expression levels in pp5-deficient
mice compared with the levels in the WT controls (Fig. 2, B–G).
Notably, a comparison of survival led to a promising result: the
p53�/�pp5�/� mice survived 122 days longer, on average, than
the p53�/�pp5�/� mice (Fig. 3B). Using in vitro biochemical
analyses, we demonstrated that PP5 directly interacts with p53
and dephosphorylates phospho-p53 at multiple Ser/Thr sites.
Furthermore, consensus p53-binding sites were identified
within the pp5 promoter region by bioinformatics analysis, and
the role of these sites in PP5 repression was confirmed via a

Figure 4. PP5 directly dephosphorylates phospho-p53 at multiple sites and interacts with p53. A, p53 immunoprecipitates were incubated in the
absence (�) or presence (�) of purified PP5 for 30 min at 30 °C followed by Western blot analysis with antibodies against phosphorylated p53 in different
tissues. B, purified PP5 dephosphorylated p53 at Ser-15 in vitro. Lane 1 represents the untreated p53 control. Following treatment with DNA-PK and ATP, p53
(lane 2) was incubated with purified PP5 (lane 3). Anti-Ser-15 p53 and anti-p53 monoclonal antibodies were used for Western blotting analyses. C, in constitu-
tively active PP5-overexpressing MEF cells, the phospho-p53 levels were significantly lower than the levels in the WT and PP5 mutant cells. D, the total p53 and
phospho-p53 levels were significantly decreased in the PP5ca transgenic mice. The interaction of p53 and PP5 was examined by co-IP (E) and GST pulldown
assays (F). G, PP5 KO increased the half-life of p53. Four hours after 4-gray ionizing radiation treatment, the WT and PP5 KO MEF cells were treated with 200 g/ml
CHX for the indicated times. Lysates were prepared and analyzed by Western blotting for p53 using glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as
a loading control. H, levels of p53 were quantified by densitometry, and optical density was plotted as the percentage of p53 protein remaining. The p53 band
intensity was normalized to the glyceraldehyde-3-phosphate dehydrogenase band intensity and then to the t � 0 controls. IB, immunoblotting; Tg, transgenic.
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ChIP assay (Fig. 5). Taken together, our data indicate that these
interactions represent a positive feedback loop between p53
and PP5 in response to cellular and genotoxic stress.

p53 has been found to have multiple functions in the main-
tenance of genome integrity, cellular apoptosis, senescence,
cell cycle control, metabolism, stem cell reprogramming, and
autophagy. As p53 is a stress-induced transcription factor, we
explored the interactions between PP5 and p53 during geno-
toxic stress by examining p53-induced apoptosis in pp5-defi-
cient mice. The results indicated that high p53 levels are
accompanied by hypersensitivity to DOX treatment in pp5-de-
ficient mice. Different p53 functions are regulated by posttrans-
lational modifications, including acetylation, phosphorylation,
methylation, ubiquitination, SUMOylation, and O-GlcNAcy-
lation (18). Phosphorylation of Ser or Thr sites is critical for the
regulation of the degradation, stabilization, and transcriptional
activity of p53 (5). Our in vitro phosphorylation experiments
indicated that PP5 dephosphorylates phospho-p53 at not only
Ser-15 but also some additional sites in vitro (Fig. 4A) in con-
trast to Wip1, which exclusively targets Ser-15 (54). Previous
studies demonstrated via suppression of pp5 expression using
an antisense pp5 oligonucleotide that PP5 appears to function
as a negative regulator of p53 at Ser-15, which is consistent with
our findings. However, they did not observe a decrease in the
phosphorylation level of p53 following overexpression of PP5
(25). Several in vitro studies have demonstrated that PP5 usu-
ally exhibits low phosphatase activity under normal conditions
(23), which is likely due to the interaction between the small
autoinhibitory domain at the C terminus (residues 490 – 499)
and the tetratricopeptide repeat domain. This interaction pre-
vents potential substrate access to the PP5 catalytic domain
(62). It has been shown that PP5 can be activated �10-fold in
vitro via a 13-amino-acid C-terminal truncation (62, 63).
Therefore, the discrepancies between previous findings and the
current study likely result from our usage of PP5ca rather than
WT PP5. In our experimental system, PP5ca maintained the
total p53 levels at a significantly low value relative to the levels
in the control. These results were obtained both in vitro and in
vivo (Fig. 4, C and D).

p53-deficient mice are developmentally viable, but these
mice exhibit reduced survival due to the development of vari-
ous tumors within 10 months of age, including lymphomas,
sarcomas, carcinoma, and osteosarcoma (64). p53 heterozy-
gous mice also develop tumors but at a later age. Approximately
50% of heterozygous p53 mice develop tumors by 18 months of
age. By 2 years, 	95% of heterozygous mice die of tumors in
contrast to a death rate of only �20% in their WT littermates
(65). Our studies on pp5-deficient mice have revealed the role
of PP5 in regulating the functions of p53, especially stability and
activity. We hypothesized that PP5 could functionally regulate
p53-mediated tumorigenesis. To test this hypothesis, we pro-

duced p53�/�pp5�/� and p53�/�pp5�/� double mutant mice
and measured survival. Reduced p53 levels in p53�/� mice can
lead to increased genomic instability, which increases the like-
lihood of the development of somatic p53-null cells (66). We
found that the p53 levels in the p53�/�pp5�/� mice were
enhanced enough to either prevent or reduce tumorigenesis,
consequently increasing longevity by an average of 122 days
(Fig. 3B).

Beyond its function as a transcriptional activator, p53 also
functions as a transcriptional repressor (67). We observed that
PP5 expression was up-regulated in MEFs and in tissues of p53-
deficient mice (Fig. 5, B and C). It has been reported that there
are two distinct types of repression mediated by p53: those that
require consensus p53-binding elements and those that
do not require such elements. Polo-like kinase 1 (68) and
Cdc25c (69) are critical mitotic checkpoint genes that are
subject to p53-mediated repression. Similar to Polo-like
kinase 1 and Cdc25c, the pp5 promoter contains a consensus
p53-binding element. Our experiment using promoter-
driven luciferase and ChIP assays demonstrated that p53
directly binds to the pp5 promoter, resulting in PP5 repres-
sion (Fig. 5, G and H).

In summary, our work shows that PP5 is a protein phospha-
tase that is capable of directly regulating p53 phosphorylation,
stability, and function and that the expression of PP5 is nega-
tively regulated by p53 (Fig. 6). This novel regulatory interplay
may provide the feedback necessary for altering the response of
p53 in response to cellular stress.

Materials and methods

Mice

The present study used pp5 KO and littermate WT mice
maintained in a C57BL/6 background. Adult mice received two
intraperitoneal injections of DOX (10 mg/kg) or vehicle (saline)
at 3-day intervals and were euthanized 7 days after the initial
injection. p53�/� male mice in a C57BL/6 background were
crossed with pp5�/� females to generate p53�/�pp5�/�, and
then crossing of p53�/�pp5�/� males and females was per-
formed to generate p53�/�pp5�/� and p53�/�pp5�/� mice.
Male p53�/�pp5�/� and p53�/�pp5�/� mice were kept under
a standard light/dark regimen (12-h light/12-h dark) for further
studies. All animal experiments were conducted in accordance
with the “Guide for the Care and Use of Laboratory Animals”
and were approved by the Animal Care and Research Advisory
Committee of the Institute of Laboratory Animal Sciences, Chi-
nese Academy of Medical Sciences, and the Indiana University
School of Medicine.

Cell lines and culture

MEF cells were obtained from WT and pp5-deficient (KO)
embryos at day 13.5 of gestation (70). H1299 and p53�/� MEFs

Figure 5. p53 negatively regulates PP5 expression. A, two putative consensus p53-binding sites were identified in the PP5 gene promoter region, and
alignment analyses demonstrated that these p53-binding sites are highly conserved among mouse, rat, human, and chimpanzee. EX1–EX3, exons 1–3. B and
C, Western blot analyses of the up-regulation of PP5 in p53 KO cells (B) and tissues (C). D, in p53 KO MEF cells, PP5 expression was repressed following p53
transfection. E and F, Western blot and real-time quantitative RT-PCR analyses of WT and pp5�/� mice liver samples. G, the binding of p53 to the pp5 promoter
was determined by a ChIP assay. IgG and agarose beads served as negative controls. H, luciferase (Luc) assays demonstrated that the pp5 promoter (pro) was
negatively regulated by p53 but not by mutant p53. Values represent the means � S.D. (error bars) of three independent experiments. ** represents p � 0.01,
and *** represents p � 0.001. GAPDH, glyceraldehyde-3-phosphate dehydrogenase.
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were gifts from Dr. Hu Lu. Cells were cultured in Dulbecco’s
modified Eagle’s medium with 10% fetal bovine serum.

In vitro phosphorylation and dephosphorylation of p53

Purified recombinant p53 was obtained from Dr. Lindsey
Mayo. DNA-PK was purchased from Promega (catalog number
9PIV581). PP5 cDNA was cloned into pET21 with BamHI/
EcoRI, and the GST fusion protein was expressed, purified, and
cleaved as described using B-PER GST Fusion Protein Purifica-
tion kits (Thermo Fisher Scientific). p53 was phosphorylated in
vitro by DNA-PK according to the manufacturer’s instructions.
After heating at 65 °C to inactivate the kinase, purified recom-
binant PP5ca was added to the reaction with phosphatase
assay buffer (50 mM Tris, 4 mM MnCl2, 4 mM MgCl2, 1 mM

EGTA, 0.1% 2-mercaptoethanol, pH 7.6). The level of phos-
phorylated p53 was assessed by Western blot analysis using
anti-phospho-p53 (Ser-15) and anti-p53 antibodies. The p53
immunoprecipitates were incubated in the absence (�) or
presence (�) of purified PP5 for 30 min at 30 °C followed by
Western blot analysis with antibodies against different p53
phosphorylation sites.

Coimmunoprecipitation and in vivo GST pulldown

Approximately 1 mg of total protein obtained from cotrans-
fected H1299 cells was coimmunoprecipitated using a Pierce
co-IP kit (catalog number 26149) following the manufacturer’s
instructions. Anti-p53 (DO-1, sc-126, Santa Cruz Biotechnol-
ogy, Inc.) and anti-IgG (A7007, Beyotime, China) were used for
antibody immobilization and to pull down p53. Anti-PP5 anti-
body (H-170, sc-67039, Santa Cruz Biotechnology, Inc.) was
used to detect the interaction between p53 and PP5. For the in
vivo GST pulldown assay, equal amounts of GST and GST-pp5
expression vectors were transfected into HEK293T cells as
indicated. Cell lysates were incubated with GSH-Sepharose
beads, and the amount of endogenous p53 pulled down was
assayed by Western blotting using a p53 antibody (DO-1).

p53 half-life

p53 protein half-life studies were performed as described by
McVean et al. (71). WT and pp5�/� MEF cells were treated
with ionizing radiation for 4 h. CHX (2 �g/ml) was then added
to inhibit further protein synthesis. Cells were harvested in
radioimmune precipitation assay buffer 15, 30, 45, and 60 min
after CHX treatment. Aliquots containing 100 �g of total pro-
tein were analyzed by Western blotting.

Bone marrow cell culture and retroviral transduction

Bone marrow LDM cells from pp5 KO and WT mice were
purified using a Ficoll gradient as described previously (72).
After 24 h of prestimulation, the cells were treated with 0, 0.01,
and 0.1 �g/ml DOX (Sigma) for 12 h. The treated cells were
stained with annexin V–allophycocyanin (BD Pharmingen) fol-
lowed by flow cytometry according to the manufacturer’s
instructions. Ecotropic retroviral supernatants (pMSCV and
pMSCV-p53) were prepared using Eco-Phoenix packaging
cells. Bone marrow cells were then transferred and sorted as
described previously (61) and treated with DOX as described
above.

Histology

Hearts were harvested, cryoprotected in 30% sucrose,
embedded, and sectioned at 10 �m using standard techniques.
To quantitate minimal cardiomyocyte fiber diameters, images
from Sirius Red/Fast Green–stained sections were captured,
digitized, and analyzed with NIH ImageJ software as described
previously (48). At least 400 randomly selected cardiomyocytes
from each animal were analyzed.

Gel electrophoresis and Western blotting

Samples were resolved on denaturing SDS gels. Transfer of
the samples to Immobilon-P� membranes and immunoblot-
ting were performed as described previously (26). Primary anti-
bodies were used to detect the following targets: p53, p53
Ser-15, p53 Ser-20, PP5, p21, and PTEN. The blots were then
incubated with the appropriate peroxidase-conjugated sec-
ondary antibodies followed by detection using enhanced
chemiluminescence.

Quantitative RT-PCR

Total RNA was isolated from mouse tissues or cells using
TRIzol (Invitrogen). First-strand cDNA was synthesized by

Figure 6. Schematic model showing the interplay between p53 and PP5
in response to stress and the role of PP5 in p53-mediated cellular func-
tions. Ub, ubiquitin.
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using the Transcriptor First-Strand cDNA Synthesis kit (Roche
Applied Science) using 1 �g of RNA as a template according to
the manufacturer’s instructions. Real-time PCR was performed
using a LightCycler 480 with LightCycler 480 SYBR Green I
Master Mix (Roche Applied Science). The relative expression
levels of the PCR products were normalized to Rpl7. The prim-
ers are listed in Table 2.

ChIP and luciferase assay

ChIP assays were performed using the ChIP Assay kit (Milli-
pore). The lysates were immunoprecipitated with either rabbit
IgG or an anti-p53 antibody (DO-1). The primers used in the
PCRs are shown in Fig. 5A. The mouse pp5 promoter contain-
ing the p53-binding site was amplified from genomic DNA with
the following primers: pr F, 5�-TAATGGTACCGCCTT-
GAATGCCACATGGAAGAA-3�; pr R, 5�-ATCAGATCTA-
AACATTATCCACCCCAGCCCC-3�. The amplified frag-
ment was then cloned into the pGL3-luciferase vector
(Promega) between the KpnI and BglII sites. The mutant mouse
pp5 promoter, which lacked two p53-binding sites (Fig. 5), was
synthesized by Thermo Fisher Scientific (Shanghai, China) and
subcloned into the pGL3-luciferase vector between the KpnI
and BglII sites. Luciferase activity was analyzed 48 h after trans-
fection, and transfection efficiency was normalized with a
Renilla expression vector.
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