10 research outputs found

    Hepatitis B virus inhibits the in vivo and in vitro synthesis and secretion of apolipoprotein C3

    No full text
    Abstract Background Hepatitis B virus (HBV) infection in the body can damage liver cells and cause disorders in blood lipid metabolism. Apolipoprotein C3 (ApoC3) plays an important role in the regulation of lipid metabolism, but no study on the HBV regulation of ApoC3 has been reported. This purpose of this study was to investigate the effect of HBV on ApoC3 expression and its regulatory mechanism. Methods The expression levels of ApoC3 mRNA and protein in the human hepatoma cell lines HepG2 and HepG2.2.15 were determined using real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) and Western blot. The HepG2 cells were co-transfected with the ApoC3 gene promoter and either HBV-infected clone pHBV1.3 or its individual genes. The changes in luciferase activity were assayed. The expression levels of ApoC3 mRNA and protein were determined using RT-qPCR and Western blot. The content of ApoC3 in the supernatant of the cultured cells was determined using an enzyme-linked immunosorbent assay (ELISA). The sera were collected from 149 patients with HBV infection and 102 healthy subjects at physical examination as the normal controls. The serological levels of ApoC3 in the HBV group and the normal control group were determined using ELISA. The contents of serum triglyceride (TG) and very-low-density lipoprotein (VLDL) in the HBV patients and the normal control were determined using an automatic biochemical analyser. Results The expression levels of ApoC3 mRNA and protein were lower in the HepG2.2.15 cells than in the HepG2 cells. pHBV1.3 and its X gene could inhibit the activity of the ApoC3 promoter and its mRNA and protein expression. The serum levels of ApoC3, VLDL and TG were 65.39 ± 7.48 μg/ml, 1.24 ± 0.49 mmol/L, and 0.46 ± 0.10 mmol/L in the HBV patients and 41.02 ± 6.88 μg/ml, 0.76 ± 0.21 mmol/L, 0.29 ± 0.05 mmol/L in the normal controls, respectively, statistical analysis revealed significantly lower serum levels of ApoC3, VLDL and TG in HBV patients than in the normal controls (P < 0.05). Conclusion HBV can inhibit the in vivo and in vitro synthesis and secretion of ApoC3

    Exosomes from MiR-30d-5p-ADSCs Reverse Acute Ischemic Stroke-Induced, Autophagy-Mediated Brain Injury by Promoting M2 Microglial/Macrophage Polarization

    No full text
    Background/Aims: Recent studies have indicated that exosomes secreted from adipose-derived stem cells (ADSCs) have important effects in the treatment of ischemic injury. However, the treatment mechanism is unclear. This study aimed to investigate whether ADSC-derived exosomes enriched with microRNA (miR)-30d-5p have a protective effect on acute ischemic stroke (AIS). Methods: In the current study, inflammatory factors and miR-30d-5p expression were assessed in 70 subjects with AIS and 35 healthy controls. Exosomes were characterized by transmission electron microscopy and further examined using nanoparticle tracking analyses. A rat model of AIS and an in vitro model of oxygen- and glucose-deprived (OGD) primary microglia were established to study the protective mechanism of exosomes from miR-30d-5p-overexpressing ADSCs in ischemia-induced nerve injury. Results: The results showed that following AIS, the expression of inflammatory cytokines increased, while the anti-inflammatory cytokines IL-4, IL-10, and miR-30d-5p decreased both in patients and in animal models. Moreover, in vitro studies demonstrated that suppression of autophagy significantly reduced the OGD-induced inflammatory response. In addition, exosome treatment was more effective in suppressing the inflammatory response by reversing OGD-induced and autophagy-mediated microglial polarization to M1. Furthermore, in vivo studies showed that exosomes derived from ADSCs significantly decreased the cerebral injury area of infarction by suppressing autophagy and promoting M2 microglia/macrophage polarization. Conclusions: Our results suggest that miR-30d-5p-enhanced ADSC-derived exosomes prevent cerebral injury by inhibiting autophagy-mediated microglial polarization to M1
    corecore