154 research outputs found

    How service‐users with intellectual disabilities understand challenging behaviour and approaches to managing it

    Get PDF
    Background This study explored understandings that service‐users with intellectual disabilities and challenging behaviour held around their behaviour, what shaped these understandings, and the relationship between how behaviours are managed and well‐being. Methods Eight participants (three female, five male) partook in individual semi‐structured qualitative interviews. Interviews were transcribed and analysed using interpretative phenomenological analysis. Results Three master themes emerged from this analysis: (a) challenging behaviour can be explained via an internal or external frame of reference, with each framework having different implications for how participants attempted to manage behaviour. (b) Positive relationships provide a long‐term buffer to challenging behaviour, with positive relationships with family, staff and peers operating through different mechanisms to achieve this. (c) A greater ability to exert power and control in day‐to‐day life was perceived to reduce challenging behaviour in the long term. Conclusions Implications for practice are discussed

    Lichen response to ammonia deposition defines the footprint of a penguin rookery

    Get PDF
    Ammonia volatilized from penguin rookeries is a major nitrogen source in Antarctic coastal terrestrial ecosystems. However, the spatial extent of ammonia dispersion from rookeries and its impacts have not been quantified previously. We measured ammonia concentration in air and lichen ecophysiological response variables proximate to an AdĂšlie penguin rookery at Cape Hallett, northern Victoria Land. Ammonia emitted from the rookery was 15N-enriched (ÎŽ15N value +6.9) and concentrations in air ranged from 36–75 ”g m−3 at the rookery centre to 0.05 ”g m−3 at a distance of 15.3 km. ÎŽ15N values and rates of phosphomonoesterase (PME) activity in the lichens Usnea sphacelata and Umbilicaria decussata were strongly negatively related to distance from the rookery and PME activity was positively related to thallus N:P mass ratio. In contrast, the lichen Xanthomendoza borealis, which is largely restricted to within an area 0.5 km from the rookery perimeter, had high N, P and 15N concentrations but low PME activity suggesting that nutrient scavenging capacity is suppressed in highly eutrophicated sites. An ammonia dispersion model indicates that ammonia concentrations sufficient to significantly elevate PME activity and ÎŽ15N values (≄0.1 ”g NH3 m−3) occurred over c. 40–300 km2 surrounding the rookery suggesting that penguin rookeries potentially can generate large spatial impact zones. In a general linear model NH3 concentration and lichen species identity were found to account for 72 % of variation in the putative proportion of lichen thallus N originating from penguin derived NH3. The results provide evidence of large scale impact of N transfer from a marine to an N-limited terrestrial ecosystem

    Isotopic analysis of cyanobacterial nitrogen fixation associated with subarctic lichen and bryophyte species.

    Get PDF
    Dinitrogen fixation by cyanobacteria is of particular importance for the nutrient economy of cold biomes, constituting the main pathway for new N supplies to tundra ecosystems. It is prevalent in cyanobacterial colonies on bryophytes and in obligate associations within cyanolichens. Recent studies, applying interspecific variation in plant functional traits to upscale species effects on ecosystems, have all but neglected cryptogams and their association with cyanobacteria. Here we looked for species-specific patterns that determine cryptogam-mediated rates of N-2 fixation in the Subarctic. We hypothesised a contrast in N-2 fixation rates (1) between the structurally and physiologically different lichens and bryophytes, and (2) within bryophytes based on their respective plant functional types. Throughout the survey we supplied N-15-labelled N-2 gas to quantify fixation rates for monospecific moss, liverwort and lichen turfs. We sampled fifteen species in a design that captures spatial and temporal variations during the growing season in Abisko region, Sweden. We measured N-2 fixation potential of each turf in a common environment and in its field sampling site, in order to embrace both comparativeness and realism. Cyanolichens and bryophytes differed significantly in their cyanobacterial N-2 fixation capacity, which was not driven by microhabitat characteristics, but rather by morphology and physiology. Cyanolichens were much more prominent fixers than bryophytes per unit dry weight, but not per unit area due to their low specific thallus weight. Mosses did not exhibit consistent differences in N-2 fixation rates across species and functional types. Liverworts did not fix detectable amounts of N-2. Despite the very high rates of N-2 fixation associated with cyanolichens, large cover of mosses per unit area at the landscape scale compensates for their lower fixation rates, thereby probably making them the primary regional atmospheric nitrogen sink
    • 

    corecore