37 research outputs found

    Analysis of the correlation between the pavement structure combinations and pavement performance using experimental sections

    Get PDF
    The new generation of pavement technology with the goal of longevity is an important supporting technology that can promote the achievement of sustainable development of high-speed roadways. To further investigate the evolution trend of long-life pavement performance, this paper paved experimental sections to explore the correlations between pavement structure combinations and pavement performances. This paper presented four experimental sections with different pavement structures, asphalt concrete layer thicknesses, and pavement materials. Then, this paper analyzed the effects of the seasonal factors, pavement structure, and lanes on the deflection value and rut depth from three dimensions by the Pearson correlation coefficient (PCC). Finally, this paper used the analysis of variance (ANOVA) to analyze the relationships between the layer thickness of various materials in the pavement structure and the pavement performances, including the deflection value, international roughness index (IRI), texture depth (TD), British Pendulum Number (BPN), sideway force coefficient (SFC), rut depth, and disease area. The results showed that the seasonal factors significantly affected the deflection values of pavement structures with PCCs of 0.61, 0.72, 0.53, and 0.78. The high temperatures increased the average deflection values by 22.85%, 72.88%, 77.61%, and 88.13%, respectively. Under the influence of high temperature in summer and traffic loads, the increased ranges of average rut depth were −0.2%, 4.89%, 9.56%, and 7.31%, respectively. The results of ANOVA showed that the pavement structure type and thickness of each structural layer significantly affected the deflection value, and there also was a strong correlation between the pavement structure type, thickness, BPN, and SFC with p-values less than 0.05. Increasing the thickness of the asphalt surface was beneficial for reducing the area of defects, while laying the semi-rigid base layer was beneficial for maintaining the deflection value and rut depth at a lower level

    Net water uptake within the ischemic penumbra predicts the presence of the midline shift in patients with acute ischemic stroke

    Get PDF
    ObjectiveThe study aimed to explore the association between midline shift (MLS) and net water uptake (NWU) within the ischemic penumbra in acute ischemic stroke patients.MethodsThis was a retrospective cohort study that examined patients with anterior circulation stroke. Net water uptake within the acute ischemic core and penumbra was calculated using data from admission multimodal CT scans. The primary outcome was severe cerebral edema measured by the presence of MLS on 24 to 48 h follow-up CT scans. The presence of a significant MLS was defined by a deviation of the septum pellucidum from the midline on follow-up CT scans of at least 3 mm or greater due to the mass effect of ischemic edema. The net water uptake was compared between patients with and without MLS, followed by logistic regression analyses and receiver operating characteristics (ROCs) to assess the predictive power of net water uptake in MLS.ResultsA total of 133 patients were analyzed: 50 patients (37.6%) with MLS and 83 patients (62.4%) without. Compared to patients without MLS, patients with MLS had higher net water uptake within the core [6.8 (3.2–10.4) vs. 4.9 (2.2–8.1), P = 0.048] and higher net water uptake within the ischemic penumbra [2.9 (1.8–4.3) vs. 0.2 (−2.5–2.7), P < 0.001]. Penumbral net water uptake had higher predictive performance than net water uptake of the core in MLS [area under the curve: 0.708 vs. 0.603, p < 0.001]. Moreover, the penumbral net water uptake predicted MLS in the multivariate regression model, adjusting for age, sex, admission National Institutes of Health Stroke Scale (NIHSS), diabetes mellitus, atrial fibrillation, ischemic core volume, and poor collateral vessel status (OR = 1.165; 95% CI = 1.002–1.356; P = 0.047). No significant prediction was found for the net water uptake of the core in the multivariate regression model.ConclusionNet water uptake measured acutely within the ischemic penumbra could predict severe cerebral edema at 24–48 h

    Optimal Delay Time of CT Perfusion for Predicting Cerebral Parenchymal Hematoma After Intra-Arterial tPA Treatment

    Get PDF
    Background and Purpose: Cerebral hemorrhage is a serious potential complication of stroke revascularization, especially in patients receiving intra-arterial tissue-type plasminogen activator (tPA) therapy. We investigated the optimal pre-intervention delay time (DT) of computed tomography perfusion (CTP) measurement to predict cerebral parenchymal hematoma (PH) in acute ischemic stroke (AIS) patients after intra-arterial tissue plasminogen activator (tPA) treatment.Methods: The study population consisted of a series of patients with AIS who received intra-arterial tPA treatment and had CTP and follow-up computed tomography/magnetic resonance imaging (CT/MRI) to identify hemorrhagic transformation. The association of increasing DT thresholds (>2, >4, >6, >8, and >10 s) with PH was examined using receiver operating characteristic (ROC) analysis and logistic regression.Results: Of 94 patients, 23 developed PH on follow-up imaging. Receiver operating characteristic analysis revealed that the greatest area under the curve for predicting PH occurred at DT > 4 s (area under the curve, 0.66). At this threshold of > 4 s, DT lesion volume ≥ 30.85 mL optimally predicted PH with 70% sensitivity and 59% specificity. DT > 4 s volume was independently predictive of PH in a multivariate logistic regression model (P < 0.05).Conclusions: DT > 4 s was the parameter most strongly associated with PH. The volume of moderate, not severe, hypo-perfusion on DT is more strongly associated and may allow better prediction of PH after intra-arterial tPA thrombolysis

    Impedance Shaping Control for STATCOM to Improve the Stability of Wind Farm Systems

    No full text

    Human action recognition based on kinematic similarity in real time.

    No full text
    Human action recognition using 3D pose data has gained a growing interest in the field of computer robotic interfaces and pattern recognition since the availability of hardware to capture human pose. In this paper, we propose a fast, simple, and powerful method of human action recognition based on human kinematic similarity. The key to this method is that the action descriptor consists of joints position, angular velocity and angular acceleration, which can meet the different individual sizes and eliminate the complex normalization. The angular parameters of joints within a short sliding time window (approximately 5 frames) around the current frame are used to express each pose frame of human action sequence. Moreover, three modified KNN (k-nearest-neighbors algorithm) classifiers are employed in our method: one for achieving the confidence of every frame in the training step, one for estimating the frame label of each descriptor, and one for classifying actions. Additional estimating of the frame's time label makes it possible to address single input frames. This approach can be used on difficult, unsegmented sequences. The proposed method is efficient and can be run in real time. The research shows that many public datasets are irregularly segmented, and a simple method is provided to regularize the datasets. The approach is tested on some challenging datasets such as MSR-Action3D, MSRDailyActivity3D, and UTD-MHAD. The results indicate our method achieves a higher accuracy

    Efficient hybrid multicast approach in wireless data center network

    No full text
    Large-scale data center suffers from overload of data traffic on some bottleneck links, due to the fact that cloud-based services are mostly accomplished by group communications with multicast traffic. This paper investigates techniques of wireless transmission using multiple channels, instead of single available communication channel as reported in existing works, to enhance the flexibility of congestion control, and at the same time, considers load balance of different links. The objective is to meet the communication demands with as little as possible total data traffic, while simultaneously optimizes the load balancing among different links. The proposed two-stage framework jointly optimizes the transmission paths for both wireless and wired communications. The first stage models the interference relation via contradiction graph such that each node of the graph represents an alternative of a wireless link, and an edge indicates that two wireless links cannot coexist due to interference. As a result, the problem of finding the optimal arrangement for wireless communication without interference is transformed into the problem of finding the maximum independent set on the obtained contradiction graph. Also, an efficient strategy is proposed in this paper to construct contradiction graph from the wireless data center network, and to find the maximum independent set (MIS) whose elements indicates the destination nodes to be served by wireless links. The second stage develops a load balance aware routing algorithm to serve the remaining traffic demands that have not been served by wireless links. Experimental results show that, the proposed approach can significantly minimize total data traffic while simultaneously balancing the traffic loads of different links. The maximum load is reduced by up to 58.97%, 56.15% and 25.62% on Fat-Tree, VL2 and BCube based wireless DCNs, in comparison to the state-of-the-art

    The content of different hydrogen bond models and crystal structure of Eucalyptus fibers during beating

    No full text
    Different hydrogen bond and crystalline cellulose structure models of eucalyptus fibers were studied by Fourier transform infrared spectrometer (FTIR), X-ray diffraction (XRD), and Cross-Polarization Magic Angle Spinning Carbon-13 Nuclear Magnetic Resonance (CP/MAS 13C NMR). It was shown that when the beating time was increased from 5 to 15 min., the content of inter-molecular hydrogen bonds, O(6)H···O3′, increased by 11.2% as measured by FTIR. However, the content of the inter-molecular hydrogen bonds decreased quickly as the beating time was increased from 15 to 25 min. Meanwhile, the contents of the intra-molecular hydrogen bond, O(2)H···O(6) and O(3)H···O(5), changed from 8.25% to 8.18% and from 39.33% to 31.27%, respectively, when the beating time increased from 5 to 15 min. The content of the intra-molecular hydrogen bonds increased quickly with the further increase in the beating time. It was shown by XRD that there was a little difference in the average width of crystallite size in the (002) lattice plane when the beaten time was between 5 to 25 min. Non-linear fitting of the cellulose C4 region of the 13C CP/MAS NMR showed that the average lateral fibril aggregate dimensions and the content of different cellulose polymorphs changed during beating

    Associations of Homocysteine, Folate, and Vitamin B12 with Osteoarthritis: A Mendelian Randomization Study

    No full text
    Homocysteine, inversely related to folate and vitamin B12, is an independent risk factor for several age-related disorders. However, little is known about the association of homocysteine and related vitamins with osteoarthritis (OA). This study aimed to elucidate the potential causal effects of homocysteine, folate, and vitamin B12 on site- and gender-specific OA by applying the two-sample Mendelian randomization (MR) approach. Genetically predicted homocysteine showed adverse effects on overall OA (95% confidence interval (CI): 1.044–1.155), knee OA (95% CI: 1.000–1.167), hip OA (95% CI: 1.057–1.297), and spine OA (95% CI: 1.017–1.216). Genetically predicted folate showed protective effects on overall OA (95% CI: 0.783–0.961) and spine OA (95% CI: 0.609–0.954). Folate (95% CI: 0.887–1.004) and vitamin B12 (95% CI: 0.886–1.009) showed a protective trend against knee OA. The patterns of associations were site and gender specific. In conclusion, homocysteine had adverse effects on OA, especially on OA at weight-bearing joints and in females. Folate and vitamin B12 had protective effects on OA. Homocysteine-lowering interventions may be a potential option in the treatment and prevention of OA

    Thresholds for infarction vary between gray matter and white matter in acute ischemic stroke : a CT perfusion study

    No full text
    We aimed to investigate optimal perfusion thresholds defining ischemic core and penumbra for hemispheric-cortical gray matter (GM) and subcortical white matter (WM). A total of 65 sub-6 h ischemic stroke patients were assessed, who underwent acute computed tomography perfusion (CTP) and acute magnetic resonance imaging. CTP maps were generated by both standard singular value deconvolution (sSVD) and SVD with delay and dispersion correction (ddSVD). Analyses were undertaken to calculate sensitivity, specificity, and area under the curve (AUC) for each CTP threshold for core and penumbra in GM and WM. With sSVD, the core was best defined in GM by cerebral blood flow (CBF) < 30% (AUC: 0.73) and in WM by CBF < 20% (AUC: 0.67). With ddSVD, GM core was best defined by CBF < 35% (AUC: 0.75) and in WM by CBF < 25% (AUC: 0.68). A combined GM/WM threshold overestimated core compared to diffusion-weighted imaging, CBF < 25% from sSVD (1.88 ml, P = 0.007) and CBF < 30% from ddSVD (1.27 ml, P = 0.011). The perfusion lesion was best defined by T max > 5 s (AUC: 0.80) in GM and T max > 7 s (AUC: 0.75) in WM. With sSVD, a delay time (DT) > 3 s from ddSVD was the optimal for both GM (AUC: 0.78) and WM (AUC: 0.75). Using tissue-specific thresholds for GM/WM provides more accurate estimation of acute ischemic core
    corecore