77 research outputs found
The effect of the lateral interactions on the critical behavior of long straight rigid rods on two-dimensional lattices
Using Monte Carlo simulations and finite-size scaling analysis, the critical
behavior of attractive rigid rods of length k (k-mers) on square lattices at
intermediate density has been studied. A nematic phase, characterized by a big
domain of parallel k-mers, was found. This ordered phase is separated from the
isotropic state by a continuous transition occurring at a intermediate density
\theta_c, which increases linearly with the magnitude of the lateral
interactions.Comment: 7 pages, 6 figure
Characterization of a decrease in muscarinic m2 mRNA in cerebellar granule cells by carbachol
Studies involving carbachol (100 microM) treatment of cerebellar granule cells for 1, 3, 6, 9, 12 and 24 hr show a decrease in the mRNA encoding for the muscarinic m2 receptor. The response was transient, decreasing m2 mRNA by 25 to 50% in 6 and 9 hr, respectively. The data presented in this work were quantified by ribonuclease protection assay, using a [32P]-cRNA probe corresponding to nucleotide +1138 to 1650 of the rat m2 muscarinic receptor. Because cerebellar granule cells express muscarinic m2 and m3 receptors, we tested whether the carbachol-mediated decrease in m2 mRNA resulted from a homologous or heterologous activation of muscarinic receptors. At a 1 microM concentration, methoctramine specifically blocked the muscarinic m2 receptor and reversed carbachol's action. These data suggested that carbachol acts via a possible homologous activation of muscarinic m2 receptors. The half-life of the receptor mRNA measured in the presence of actinomycin D with and without carbachol were similar. Because carbachol treatments decrease the steady-state levels of m2 mRNA without changing the half-life of the message, we suggest that a carbachol treatment induces a decrease in the transcription of the gene for the muscarinic m2 receptor
Neurosteroid and neurotransmitter alterations in Parkinson's disease
Parkinson's disease (PD) is associated with a massive loss of dopaminergic cells in the substantia nigra leading to dopamine hypofunction and alteration of the basal ganglia circuitry. These neurons, are under the control, among others, of the excitatory glutamatergic and inhibitory γ-aminobutyric acid (GABA) systems. An imbalance between these systems may contribute to excitotoxicity and dopaminergic cell death. Neurosteroids, a group of steroid hormones synthesized in the brain, modulate the function of several neurotransmitter systems. The substantia nigra of the human brain expresses high concentrations of allopregnanolone (3α, 5αtetrahydroprogesterone), a neurosteroid that positively modulates the action of GABA at GABAA receptors and of 5α-dihydroprogesterone, a neurosteroid acting at the genomic level. This article reviews the roles of NS acting as neuroprotectants and as GABAA receptor agonists in the physiology and pathophysiology of the basal ganglia, their impact on dopaminergic cell activity and survival, and potential therapeutic application in PD
Autophagy, lithium, and amyotrophic lateral sclerosis
In this article we provide an overview of the intersection between amyotrophic lateral sclerosis (ALS) and the autophagy pathway and discuss the potential protective effects of lithium through mechanisms that recruit autophagy and other effects. The autophagy pathway is recruited during motor neuron (MN) death both in vitro and in vivo. Despite a few controversial issues concerning the significance (detrimental/protective) of autophagy in ALS, recent findings indicate a protective role. Lithium in low doses is a well-known autophagy inducer that clears misfolded proteins and altered mitochondria from MNs. Moreover, lithium preserves mitochondria and sustains their genesis. This effect is replicated by rapamycin, which is an autophagy inducer but with a different mechanism from lithium. Lithium also increases the number of Renshaw cells that are affected early during the progression of experimental ALS. Again, lithium has been reported to decrease glial proliferation in the ALS spinal cord and induces sprouting in corticospinal fibers
- …