2,241 research outputs found

    What is New in Melanoma Genetics and Treatment?

    Get PDF
    New therapies for advanced melanoma have led to major advances, which, for the first time, showed improved survival for patients with this very challenging neoplasm. These new treatments are based on gene-targeted therapies or stimulation of immune responses. However, these treatments are not without challenges in terms of resistance and toxicity. Physicians should be aware of these side effects as prompt treatment may save lives. Melanoma genetics is also unravelling new genetic risk factors involving telomere genes as well as new gene pathways at the somatic level which may soon become therapeutic targets. It is also shedding new light onto the pathology of this tumour with links to neural diseases and longevity

    Are the IL-2 Receptors Expressed in the Murine Fetal Thymus Functional?

    Get PDF
    It is well established that the majority of murine fetal thymocytes (day 15 of gestation) express receptors for interleukin 2 (IL-2), but the functional significance of these IL-2 receptors (IL-2Rs) is not clear. In situ hybridization data show a developmentally regulated expression of IL-2 and IL-2R mRNA. IL-2 binding studies were performed on fetal thymocytes and the results show the presence of both high (kD ≅ 20 pM) and low (kD ≅ 10 nM) affinity IL-2Rs. These IL-2Rs are indeed functional: intact fetal thymic lobes (but not cell suspensions) cultured in IL-2 exhibited an in vitro proliferative response at 20 pM of IL-2, corresponding with the presence of a functional high-affinity IL-2R on fetal thymocytes. The IL-2-dependent growth was primarily observed in the IL-2R + thymic subset, which contains the CD3-/CD4-/CD8- precursor thymocytes. Furthermore, in vitro blocking of IL-2 in intact fetal thymic lobes resulted in a reduction in the cell yield, which predominantly affected the expansion of the immature CD3-/CD4-/CD8-thymocytes. Our findings strongly support the concept that the IL-2/IL-2R pathway is responsible for the proliferation of precursor cells within the fetal thymus

    Functional Dyspepsia

    Get PDF
    Dyspepsia is a constellation of symptoms referable to the gastroduodenal region of the upper gastrointestinal tract. Functional dyspepsia, a relapsing and remitting disorder, is the most common cause of these symptoms. The current standard for the diagnosis of functional dyspepsia is the Rome III criteria, developed by the Rome III Committees, a multinational group of experts in the field, first convened in 1990, that meets regularly to review and revise the diagnostic criteria for all functional gastrointestinal disorders. In most patients with functional dyspepsia, the natural history is chronic and fluctuating, with periods of time when the patient is asymptomatic followed by episodes of symptom relapse. Data from population-based studies suggest that, during extended follow-up, approximately 15 to 20% of people with functional dyspepsia have persistent symptoms and 50% have resolution of symptoms; in the remaining 30 to 35% of patients symptoms will fluctuate and meet the criteria for another functional gastrointestinal disorder.81 Despite the chronic nature of functional dyspepsia, there is no evidence to suggest that it is associated with decreased survival

    Antigen-Independent IFN-γ Production by Human Naïve CD4+ T Cells Activated by IL-12 Plus IL-18

    Get PDF
    The role of T cells in innate immunity is not well defined. In this report, we show that a subset of human peripheral blood CD4+ T cells responds to IL-12 plus IL-18, but not to IL-12 or IL-18 alone, by producing IFN-γ in the absence of any antigenic stimulation or cell proliferation. Intracellular staining reveals a small percentage of resting CD4+ T cells (0.5 to 1.5%) capable of producing IFN-γ in response to IL-12 plus IL-18. Interestingly, both naïve (CD45RA+) and memory (CD45RO+) CD4+ populations were responsive to IL-12 plus IL-18 stimulation in producing IFN-γ. The expression of IFN-γinduced by IL-12 and IL-18 is sensitive to rapamycin and SB203580, indicating the possible involvement of mTOR and p38 MAP kinase, respectively, in this synergistic pathway. While p38MAP kinase is involved in transcription, mTOR is involved in message stabilization. We have also shown that NFκB family member, cRel, but not GADD45β and GADD45γ, plays an important role in IL-12 plus IL-18-induced IFN-γ transcription. Thus, the present study suggests that naïve CD4+ T cells may participate in innate immunity or amplify adaptive immune responses through cytokine-induced antigen-independent cytokine production

    Effects of aging and calorie restriction on the global gene expression profiles of mouse testis and ovary

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aging of reproductive organs is not only a major social issue, but of special interest in aging research. A long-standing view of 'immortal germ line versus mortal soma' poses an important question of whether the reproductive tissues age in similar ways to the somatic tissues. As a first step to understand this phenomenon, we examine global changes in gene expression patterns by DNA microarrays in ovaries and testes of C57BL/6 mice at 1, 6, 16, and 24 months of age. In addition, we compared a group of mice on <it>ad libitum </it>(AL) feeding with a group on lifespan-extending 40% calorie restriction (CR).</p> <p>Results</p> <p>We found that gene expression changes occurred in aging gonads, but were generally different from those in somatic organs during aging. For example, only two functional categories of genes previously associated with aging in muscle, kidney, and brain were confirmed in ovary: genes associated with complement activation were upregulated, and genes associated with mitochondrial electron transport were downregulated. The bulk of the changes in gonads were mostly related to gonad-specific functions. Ovaries showed extensive gene expression changes with age, especially in the period when ovulation ceases (from 6 to 16 months), whereas testes showed only limited age-related changes. The same trend was seen for the effects of CR: CR-mediated reversal of age-associated gene expression changes, reported in somatic organs previously, was limited to a small number of genes in gonads. Instead, in both ovary and testis, CR caused small and mostly gonad-specific effects: suppression of ovulation in ovary and activation of testis-specific genes in testis.</p> <p>Conclusion</p> <p>Overall, the results are consistent with unique modes of aging and its modification by CR in testis and ovary.</p
    • …
    corecore