63 research outputs found

    Resection of the liver for colorectal carcinoma metastases - A multi-institutional study of long-term survivors

    Get PDF
    In this review of a collected series of patients undergoing hepatic resection for colorectal metastases, 100 patients were found to have survived greater than five years from the time of resection. Of these 100 long-term survivors, 71 remain disease-free through the last follow-up, 19 recurred prior to five years, and ten recurred after five years. Patient characteristics that may have contributed to survival were examined. Procedures performed included five trisegmentectomies, 32 lobectomies, 16 left lateral segmentectomies, and 45 wedge resections. The margin of resection was recorded in 27 patients, one of whom had a positive margin, nine of whom had a less than or equal to 1-cm margin, and 17 of whom had a greater than 1-cm margin. Eighty-one patients had a solitary metastasis to the liver, 11 patients had two metastases, one patient had three metastases, and four patients had four metastases. Thirty patients had Stage C primary carcinoma, 40 had Stage B primary carcinoma, and one had Stage A primarycarcinoma. The disease-free interval from the time of colon resection to the time of liver resection was less than one year in 65 patients, and greater than one year in 34 patients. Three patients had bilobar metastases. Four of the patients had extrahepatic disease resected simultaneously with the liver resection. Though several contraindications to hepatic resection have been proposed in the past, five-year survival has been found in patients with extrahepatic disease resected simultaneously, patients with bilobar metastases, patients with multiple metastases, and patients with positive margins. Five-year disease-free survivors are also present in each of these subsets. It is concluded that five-year survival is possible in the presence of reported contraindications to resection, and therefore that the decision to resect the liver must be individualized. © 1988 American Society of Colon and Rectal Surgeons

    The enigma of in vivo oxidative stress assessment: isoprostanes as an emerging target

    Get PDF
    Oxidative stress is believed to be one of the major factors behind several acute and chronic diseases, and may also be associated with ageing. Excess formation of free radicals in miscellaneous body environment may originate from endogenous response to cell injury, but also from exposure to a number of exogenous toxins. When the antioxidant defence system is overwhelmed, this leads to cell damage. However, the measurement of free radicals or their endproducts is tricky, since these compounds are reactive and short lived, and have diverse characteristics. Specific evidence for the involvement of free radicals in pathological situations has been difficult to obtain, partly owing to shortcomings in earlier described methods for the measurement of oxidative stress. Isoprostanes, which are prostaglandin-like bioactive compounds synthesized in vivo from oxidation of arachidonic acid, independently of cyclooxygenases, are involved in many human diseases, and their measurement therefore offers a way to assess oxidative stress. Elevated levels of F2-isoprostanes have also been seen in the normal human pregnancy, but their physiological role has not yet been defined. Large amounts of bioactive F2-isoprostanes are excreted in the urine in normal basal situations, with a wide interindividual variation. Their exact role in the regulation of normal physiological functions, however, needs to be explored further. Current understanding suggests that measurement of F2-isoprostanes in body fluids provides a reliable analytical tool to study oxidative stress-related diseases and experimental inflammatory conditions, and also in the evaluation of various dietary antioxidants, as well as drugs with radical-scavenging properties. However, assessment of isoprostanes in plasma or urine does not necessarily reflect any specific tissue damage, nor does it provide information on the oxidation of lipids other than arachidonic acid

    Transplantation of bioengineered rat lungs recellularized with endothelial and adipose-derived stromal cells

    Get PDF
    Bioengineered lungs consisting of a decellularized lung scaffold that is repopulated with a patient’s own cells could provide desperately needed donor organs in the future. This approach has been tested in rats, and has been partially explored in porcine and human lungs. However, existing bioengineered lungs are fragile, in part because of their immature vascular structure. Herein, we report the application of adipose-derived stem/stromal cells (ASCs) for engineering the pulmonary vasculature in a decellularized rat lung scaffold. We found that pre-seeded ASCs differentiated into pericytes and stabilized the endothelial cell (EC) monolayer in nascent pulmonary vessels, thereby contributing to EC survival in the regenerated lungs. The ASC-mediated stabilization of the ECs clearly reduced vascular permeability and suppressed alveolar hemorrhage in an orthotopic transplant model for up to 3?h after extubation. Fibroblast growth factor 9, a mesenchyme-targeting growth factor, enhanced ASC differentiation into pericytes but overstimulated their proliferation, causing a partial obstruction of the vasculature in the regenerated lung. ASCs may therefore provide a promising cell source for vascular regeneration in bioengineered lungs, though additional work is needed to optimize the growth factor or hormone milieu for organ culture

    Designing DNA nanodevices for compatibility with the immune system of higher organisms

    No full text
    DNA is proving to be a powerful scaffold to construct molecularly precise designer DNA devices. Recent trends reveal their ever-increasing deployment within living systems as delivery devices that not only probe but also program and reprogram a cell, or even whole organisms. Given that DNA is highly immunogenic, we outline the molecular, cellular and organismal response pathways that designer nucleic acid nanodevices are likely to elicit in living systems. We address safety issues applicable when such designer DNA nanodevices interact with the immune system. In light of this, we discuss possible molecular programming strategies that could be integrated with such designer nucleic acid scaffolds to either evade or stimulate the host response with a view to optimizing and widening their applications in higher organisms

    Generation of functional thyroid from embryonic stem cells.

    No full text
    The primary function of the thyroid gland is to metabolize iodide by synthesizing thyroid hormones, which are critical regulators of growth, development and metabolism in almost all tissues. So far, research on thyroid morphogenesis has been missing an efficient stem-cell model system that allows for the in vitro recapitulation of the molecular and morphogenic events regulating thyroid follicular-cell differentiation and subsequent assembly into functional thyroid follicles. Here we report that a transient overexpression of the transcription factors NKX2-1 and PAX8 is sufficient to direct mouse embryonic stem-cell differentiation into thyroid follicular cells that organize into three-dimensional follicular structures when treated with thyrotropin. These in vitro-derived follicles showed appreciable iodide organification activity. Importantly, when grafted in vivo into athyroid mice, these follicles rescued thyroid hormone plasma levels and promoted subsequent symptomatic recovery. Thus, mouse embryonic stem cells can be induced to differentiate into thyroid follicular cells in vitro and generate functional thyroid tissue.Journal ArticleResearch Support, N.I.H. ExtramuralResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe

    The Preparation of Decellularized Mouse Lung Matrix Scaffolds for Analysis of Lung Regenerative Cell Potential

    No full text
    Lung transplantation is the only option for patients with end-stage lung disease, but there is a shortage of available lung donors. Furthermore, efficiency of lung transplantation has been limited due to primary graft dysfunction. Recent mouse models mimicking lung disease in humans have allowed for deepening our understanding of disease pathomechanisms. Moreover, new techniques such as decellularization and recellularization have opened up new possibilities to contribute to our understanding of the regenerative mechanisms involved in the lung. Stripping the lung of its native cells allows for unprecedented analyses of extracellular matrix and sets a physiologic platform to study the regenerative potential of seeded cells. A comprehensive understanding of the molecular pathways involved for lung development and regeneration in mouse models can be translated to regeneration strategies in higher organisms, including humans. Here we describe and discuss several techniques used for murine lung de- and recellularization, methods for evaluation of efficacy including histology, protein/RNA isolation at the whole lung, as well as lung slices level
    corecore