40 research outputs found

    Differential Responses of Human and Mouse Lung Epithelial Cells in Inducible Resistance to Viral Infection

    Get PDF
    https://openworks.mdanderson.org/sumexp21/1240/thumbnail.jp

    The Effects of the Transcription Factor IRF-3 in Pam2ODN Microbial Resistance

    Get PDF
    https://openworks.mdanderson.org/sumexp23/1092/thumbnail.jp

    Epithelial immunomodulation by aerosolized Toll-like receptor agonists prevents allergic inflammation in airway mucosa in mice

    Get PDF
    Allergic asthma is a chronic inflammatory respiratory disease associated with eosinophilic infiltration, increased mucus production, airway hyperresponsiveness, and airway remodeling. Epidemiologic data reveal that the prevalence of allergic sensitization and associated diseases has increased in the twentieth century. This has been hypothesized to be partly due to reduced contact with microbial organisms (the hygiene hypothesis) in industrialized society. Airway epithelial cells, once considered a static physical barrier between the body and the external world, are now widely recognized as immunologically active cells that can initiate, maintain, and restrain inflammatory responses, such as those that mediate allergic disease. Airway epithelial cells can sense allergens via expression of myriad Toll-like receptors (TLRs) and other pattern-recognition receptors. We sought to determine whether the innate immune response stimulated by a combination of Pam2CSK4 (“Pam2”, TLR2/6 ligand) and a class C oligodeoxynucleotide ODN362 (“ODN”, TLR9 ligand), when delivered together by aerosol (“Pam2ODN”), can modulate the allergic immune response to allergens. Treatment with Pam2ODN 7 days before sensitization to House Dust Mite (HDM) extract resulted in a strong reduction in eosinophilic and lymphocytic inflammation. This Pam2ODN immunomodulatory effect was also seen using Ovalbumin (OVA) and A. oryzae (Ao) mouse models. The immunomodulatory effect was observed as much as 30 days before sensitization to HDM, but ineffective just 2 days after sensitization, suggesting that Pam2ODN immunomodulation lowers the allergic responsiveness of the lung, and reduces the likelihood of inappropriate sensitization to aeroallergens. Furthermore, Pam2 and ODN cooperated synergistically suggesting that this treatment is superior to any single agonist in the setting of allergen immunotherapy

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Uncut immunoblots for mitochondria mass analysis.

    No full text
    HBEC3-KT cells were exposed to ODN for 0, 50, or 100 min. Shown are the uncut immunoblots for the bands shown in Fig 2B. These include (A) SDHB, succinate dehydrogenase subunit B; (B) COX4, cytochrome c oxidase subunit IV; (C) ATP5A, ATP synthase alpha-subunit; (D) CS, citrate synthase; (E) VDAC1, voltage dependent anion channel 1; and (F) β-Actin, used as a loading control. (EPS)</p

    Effect of TCA cycle metabolites on ODN-induced mtROS generation.

    No full text
    mtROS dose response to ODN in HBEC3-KT cells supplemented with the TCA metabolites or metabolite analogues (A) citrate, (B) pyruvate, (C) α-ketoglutarate, (D) dimethyl succinate, (E) dimethyl malonate, (F) dimethyl fumurate or (G) oxaloacetate. * p≤0.003 vs. 0 μM ODN treated with no metabolite pretreatment by one-way ANOVA using Holm-Sidak method. † p≤0.05 vs. same ODN dose with no metabolite pretreatment by one-way ANOVA using Holm-Sidak method. ‡ p (EPS)</p
    corecore