10 research outputs found

    Natural History and Ecology of Interactions Between Bordetella Species and Amoeba

    Get PDF
    A variety of bacteria have evolved the ability to interact with environmental phagocytic predators such as amoebae, which may have facilitated their subsequent interactions with phagocytes in animal hosts. Our recent study found that the animal pathogen Bordetella bronchiseptica can evade predation by the common soil amoeba Dictyostelium discoideum, survive within, and hijack its complex life cycle as a propagation and dissemination vector. However, it is uncertain whether the mechanisms allowing interactions with predatory amoebae are conserved among Bordetella species, because divergence, evolution, and adaptation to different hosts and ecological niches was accompanied by acquisition and loss of many genes. Here we tested 9 diverse Bordetella species in three assays representing distinct aspects of their interactions with D. discoideum. Several human and animal pathogens retained the abilities to survive within single-celled amoeba, to inhibit amoebic plaque expansion, and to translocate with amoebae to the fruiting body and disseminate along with the fruiting body. In contrast, these abilities were partly degraded for the bird pathogen B. avium, and for the human-restricted species B. pertussis and B. parapertussis. Interestingly, a different lineage of B. parapertussis only known to infect sheep retained the ability to interact with D. discoideum, demonstrating that these abilities were lost in multiple lineages independently, correlating with niche specialization and recent rapid genome decay apparently mediated by insertion sequences. B. petrii has been isolated sporadically from diverse human and environmental sources, has acquired insertion sequences, undergone genome decay and has also lost the ability to interact with amoebae, suggesting some specialization to some unknown niche. A genome-wide association study (GWAS) identified a set of genes that are potentially associated with the ability to interact with D. discoideum. These results suggest that massive gene loss associated with specialization of some Bordetella species to a closed life cycle in a particular host was repeatedly and independently accompanied by loss of the ability to interact with amoebae in an environmental niche

    Wave Climate Associated With Changing Water Level and Ice Cover in Lake Michigan

    Get PDF
    Detailed knowledge of wave climate change is essential for understanding coastal geomorphological processes, ecosystem resilience, the design of offshore and coastal engineering structures and aquaculture systems. In Lake Michigan, the in-situ wave observations suitable for long-term analysis are limited to two offshore MetOcean buoys. Since this distribution is inadequate to fully represent spatial patterns of wave climate across the lake, a series of high-resolution SWAN model simulations were performed for the analysis of long-term wave climate change for the entirety of Lake Michigan from 1979 to 2020. Model results were validated against observations from two offshore buoys and 16 coastal buoys. Linear regression analysis of significant wave height (Hs) (mean, 90th percentile, and 99th percentile) across the entire lake using this 42-year simulation suggests that there is no simple linear trend of long-term changes of Hs for the majority (\u3e90%) of the lake. To address the inadequacy of linear trend analysis used in previous studies, a 10-year trailing moving mean was applied to the Hs statistics to remove seasonal and annual variability, focusing on identifying long-term wave climate change. Model results reveal the regime shifts of Hs that correspond to long-term lake water level changes. Specifically, downward trends of Hs were found in the decade of 1990–2000; low Hs during 2000–2010 coincident with low lake levels; and upward trends of Hs were found during 2010–2020 along with rising water levels. The coherent pattern between the wave climate and the water level was hypothesized to result from changing storm frequency and intensity crossing the lake basin, which influences both waves (instantly through increased wind stress on the surface) and water levels (following, with a lag through precipitation and runoff). Hence, recent water level increases and wave growth were likely associated with increased storminess observed in the Great Lakes. With regional warming, the decrease in ice cover in Lake Michigan (particularly in the northernmost region of the lake) favored the wave growth in the winter due to increased surface wind stress, wind fetch, and wave transmission. Model simulations suggest that the basin-wide Hs can increase significantly during the winter season with projected regional warming and associated decreases in winter ice cover. The recent increases in wave height and water level, along with warming climate and ice reduction, may yield increasing coastal damages such as accelerating coastal erosion

    Detection and localization of rabbit hepatitis e virus and antigen in systemic tissues from experimentally intraperitoneally infected rabbits.

    Get PDF
    Rabbit hepatitis E virus (HEV) is a novel genotype of HEV, and is considered to pose a risk of zoonotic transmission. Research into the systemic distribution of rabbit HEV in rabbits during different periods of infection has rarely been reported. To better understand this virus, we infected rabbits with second-passage rabbit HEV via an intraperitoneal route. After inoculation, the infection showed two types, temporary and constant infection. The detection of HEV RNA in the feces varied with time, and serum antigen correlated with fecal HEV RNA. Viremia only appeared 72 days after inoculation. The rabbits remained antibody negative throughout the experimental period. When HEV was localized, several organs besides the liver were HEV RNA positive. Tissue antigen was observed immunohistochemically in the different cells of various organs, especially in parts of the small intestine and the characteristic rabbit gut-associated lymphoid tissue. These data provide valuable information for future research into the pathogenesis of HEV

    Wave attenuation by flattened vegetation (Scirpus mariqueter)

    No full text
    With the capacity to reduce wave energy and trap sediment, Scirpus mariqueter has become an important native species of annual grass for ecology restoration at the Yangtze Estuary in eastern China. Due to seasonal variances of biophysical characteristics, S. mariqueter usually bends and breaks in winter, resulting in flattened stems that may reduce its wave attenuation capacity. To investigate the effects of vegetation flattening on wave attenuation, a set of flume experiments were conducted for flattened and standing vegetation under different wave conditions. The model vegetation was designed to represent the wilted S. mariqueter collected in winter with dynamic similarity. Results showed that the wave damping coefficient for flattened vegetation (ÎČF) was 33.6%-72.4% of that for standing vegetation (ÎČS) with the same vegetation length. Both ÎČF and ÎČS increased with wave height but decreased with water depth. A wave attenuation indicator (WAI) was defined to generate empirical formulas for ÎČS and ÎČF as well as their ratio ÎČF/ÎČS. The empirical formulas were then applied to modify the existing standing vegetation-based wave attenuation model for flattened vegetation and performed successfully. Understanding the wave attenuation characteristics of flattened vegetation is essential for the management of ecological restoration and coastal protection.</p

    Development and verification of a nomogram for predicting short-term mortality in elderly ischemic stroke populations

    No full text
    Abstract Stroke is a major healthcare problem worldwide, particularly in the elderly population. Despite limited research on the development of prediction models for mortality in elderly individuals with ischemic stroke, our study aimed to address this knowledge gap. By leveraging data from the Medical Information Mart for Intensive Care IV database, we collected comprehensive raw data pertaining to elderly patients diagnosed with ischemic stroke. Through meticulous screening of clinical variables associated with 28-day mortality, we successfully established a robust nomogram. To assess the performance and clinical utility of our nomogram, various statistical analyses were conducted, including the concordance index, integrated discrimination improvement (IDI), net reclassification index (NRI), calibration curves and decision curve analysis (DCA). Our study comprised a total of 1259 individuals, who were further divided into training (n = 894) and validation (n = 365) cohorts. By identifying several common clinical features, we developed a nomogram that exhibited a concordance index of 0.809 in the training dataset. Notably, our findings demonstrated positive improvements in predictive performance through the IDI and NRI analyses in both cohorts. Furthermore, calibration curves indicated favorable agreement between the predicted and actual incidence of mortality (P > 0.05). DCA curves highlighted the substantial net clinical benefit of our nomogram compared to existing scoring systems used in routine clinical practice. In conclusion, our study successfully constructed and validated a prognostic nomogram, which enables accurate short-term mortality prediction in elderly individuals with ischemic stroke

    Serum HEV antigen tested by ELISA on various days postinoculation (dpi).

    No full text
    <p><b>A</b> Serum HEV antigen tested by ELISA at 14“control”. Only one rabbit (14B) became positive for the HEV antigen. <b>B</b> Serum HEV antigen tested with an ELISA at 72 dpi. The HEV antigen showed temporary or constant elevation. The rabbits in the inoculated group were designated 72A, 72B, 72C, and 72D, and all the rabbits in the control group were designated “control”.</p

    Samples of rabbits detected for HEV RNA by RT-nPCR.

    No full text
    <p>N: samples not detected by RT-nPCR; -: HEV RNA negative by RT-nPCR; 14B, 14D, 72A, 72B, 72C and 72D: HEV RNA positive rabbit number by RT-nPCR.</p

    IP-10 Promotes Blood–Brain Barrier Damage by Inducing Tumor Necrosis Factor Alpha Production in Japanese Encephalitis

    No full text
    Japanese encephalitis is a neuropathological disorder caused by Japanese encephalitis virus (JEV), which is characterized by severe pathological neuroinflammation and damage to the blood–brain barrier (BBB). Inflammatory cytokines/chemokines can regulate the expression of tight junction (TJ) proteins and are believed to be a leading cause of BBB disruption, but the specific mechanisms remain unclear. IP-10 is the most abundant chemokine produced in the early stage of JEV infection, but its role in BBB disruption is unknown. The administration of IP-10-neutralizing antibody ameliorated the decrease in TJ proteins and restored BBB integrity in JEV-infected mice. In vitro study showed IP-10 and JEV treatment did not directly alter the permeability of the monolayers of endothelial cells. However, IP-10 treatment promoted tumor necrosis factor alpha (TNF-α) production and IP-10-neutralizing antibody significantly reduced the production of TNF-α. Thus, TNF-α could be a downstream cytokine of IP-10, which decreased TJ proteins and damaged BBB integrity. Further study indicated that JEV infection can stimulate upregulation of the IP-10 receptor CXCR3 on astrocytes, resulting in TNF-α production through the JNK-c-Jun signaling pathway. Consequently, TNF-α affected the expression and cellular distribution of TJs in brain microvascular endothelial cells and led to BBB damage during JEV infection. Regarding regulation of the BBB, the IP-10/TNF-α cytokine axis could be considered a potential target for the development of novel therapeutics in BBB-related neurological diseases
    corecore