2,170 research outputs found

    Dynamical oscillations in nonlinear optical media

    Full text link
    The spatial dynamics of pulses in Kerr media with parabolic index profile are examined. It is found that when diffraction and graded-index have opposite signs propagating pulses exhibit an oscillatory pattern, similar to a breathing behavior. Furthermore, if the pulse and the index profile are not aligned the pulse oscillates around the index origin with frequency that depends on the values of the diffraction and index of refraction. These oscillations are not observed when diffraction and graded-index share the same sign

    InSiDDe: A server for designing artificial disordered proteins

    Get PDF
    InSiDDe (In Silico Disorder Design) is a program for the in silico design of intrinsically disordered proteins of desired length and disorder probability. The latter is assessed using IUPred and spans values ranging from 0.55 to 0.95 with 0.05 increments. One to ten artificial sequences per query, each made of 50 to 200 residues, can be generated by InSiDDe. We describe the rationale used to set up InSiDDe and show that an artificial sequence of 100 residues with an IUPred score of 0.6 designed by InSiDDe could be recombinantly expressed in E. coli at high levels without degradation when fused to a natural molecular recognition element (MoRE). In addition, the artificial fusion protein exhibited the expected behavior in terms of binding modulation of the specific partner recognized by the MoRE. To the best of our knowledge, InSiDDe is the first publicly available software for the design of intrinsically disordered protein (IDP) sequences. InSiDDE is publicly available online

    Invisibility in non-Hermitian tight-binding lattices

    Full text link
    Reflectionless defects in Hermitian tight-binding lattices, synthesized by the intertwining operator technique of supersymmetric quantum mechanics, are generally not invisible and time-of-flight measurements could reveal the existence of the defects. Here it is shown that, in a certain class of non-Hermitian tight-binding lattices with complex hopping amplitudes, defects in the lattice can appear fully invisible to an outside observer. The synthesized non-Hermitian lattices with invisible defects possess a real-valued energy spectrum, however they lack of parity-time (PT) symmetry, which does not play any role in the present work.Comment: to appear in Phys. Rev.

    Salvage of Upper Limb following a Severe Crushing Trauma: Immediate Reconstruction with a Free Flap and Subsequent Hyperbaric Oxygen Therapy

    Get PDF
    A microsurgical latissimus dorsi flap was performed for resurfacing a large soft tissue defect of the forearm with exposure of the vital structures and contaminated wound. Early coverage of a defect is a generally accepted concept to achieve a better functional result. The authors present a case report where a free latissimus dorsi flap with subsequent hyperbaric oxygen therapy allowed a successful single stage reconstruction of this complex severely contaminated defect

    Multistable Pulse-like Solutions in a Parametrically Driven Ginzburg-Landau Equation

    Full text link
    It is well known that pulse-like solutions of the cubic complex Ginzburg-Landau equation are unstable but can be stabilised by the addition of quintic terms. In this paper we explore an alternative mechanism where the role of the stabilising agent is played by the parametric driver. Our analysis is based on the numerical continuation of solutions in one of the parameters of the Ginzburg-Landau equation (the diffusion coefficient cc), starting from the nonlinear Schr\"odinger limit (for which c=0c=0). The continuation generates, recursively, a sequence of coexisting stable solutions with increasing number of humps. The sequence "converges" to a long pulse which can be interpreted as a bound state of two fronts with opposite polarities.Comment: 13 pages, 6 figures; to appear in PR

    Optical realization of the two-site Bose-Hubbard model in waveguide lattices

    Full text link
    A classical realization of the two-site Bose-Hubbard Hamiltonian, based on light transport in engineered optical waveguide lattices, is theoretically proposed. The optical lattice enables a direct visualization of the Bose-Hubbard dynamics in Fock space.Comment: to be published, J Phys. B (Fast Track Communication

    SL(2,R) model with two Hamiltonian constraints

    Get PDF
    We describe a simple dynamical model characterized by the presence of two noncommuting Hamiltonian constraints. This feature mimics the constraint structure of general relativity, where there is one Hamiltonian constraint associated with each space point. We solve the classical and quantum dynamics of the model, which turns out to be governed by an SL(2,R) gauge symmetry, local in time. In classical theory, we solve the equations of motion, find a SO(2,2) algebra of Dirac observables, find the gauge transformations for the Lagrangian and canonical variables and for the Lagrange multipliers. In quantum theory, we find the physical states, the quantum observables, and the physical inner product, which is determined by the reality conditions. In addition, we construct the classical and quantum evolving constants of the system. The model illustrates how to describe physical gauge-invariant relative evolution when coordinate time evolution is a gauge.Comment: 9 pages, 1 figure, revised version, to appear in Phys. Rev.
    corecore