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ABSTRACT 
Because of heterogeneity across regions, economic policy measures are increasingly 
targeted at the regional level.  As a result, the need for economic forecasts at a sub-
national level is rapidly increasing.  The data available to compute regional forecasts 
is usually based on a pseudo-panel that consists of a limited number of observations 
over time, and a large number of areas (regions) strongly interacting with each other.  
In such a situation, the application of traditional time-series techniques to distinct time 
series of regional data may then become a sub-optimal forecasting strategy. 
In the field of regional forecasting of socio-economic variables, both linear and non-
linear models have recently been applied and evaluated.  However, often such 
analyses tend to ignore the spatial structure of the data and the spatial interactions that 
are likely to exist among regions. 
In this paper, we evaluate the ability of different statistical techniques – namely 
spatial lag and spatial error models – to correct for misspecification due to neglected 
spatial autocorrelation in the data set.  Our empirical application concerns short-term 
forecasts of employment in 326 West German labour market regions.  We find that 
the superimposed spatial structure that is required for the estimation of spatial models 
improves the forecasting performance of non-spatial forecasting models. 
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1.  INTRODUCTION 
 

Nowadays there is a large body of theoretical and empirical literature concerned with 

forecasting macro-economic variables.  Various studies on forecasts of 

macroeconomic time-series have recently been carried out, among others, by 

Boomsma (1999), Dua and Miller (1995), Fauvel et al. (1999), Partridge and Rickman 

(1998), Rickman (2002), Stock and Watson (1998, 2002), and Swanson and White 

(1997a, 1997b).  Such literature focuses normally on time-series data, that is, it uses a 

large number of observations over time to forecast the future behaviour of a given 

economic variable, usually at national or macro level. 

 Since in practice substantial labour market disparities can be found for small 

regions, the prediction of the future behaviour of single regions in a national economy 

is gaining increasing attention.  It has often been noted that the variability of labour 

market aggregates is much higher across regions of the same country than across 

national economies (see, e.g., Overman and Puga, 2002 and OECD, 2000).  

Furthermore, empirical analyses show that regions are affected by local-specific 

shocks, and react differently to national shocks (see, e.g., Blanchard and Katz, 1992 

for the US and Decressin and Fatás, 1995 for the EU).  Therefore, to counteract 

disparities among regional labour markets, and to make an efficient use of available 

public funds, national governments are – for several reasons – always in need of 

reliable regional forecasts to complement the ones computed at national level. 

 In the first place, the computation of forecasts for such small, open and highly 

interacting regional economies represents an intriguing challenge.  To better represent 

the similarities and differences across regions, as well as the interactions among them, 

panel data sets should be used.  Nevertheless, the use of panel data techniques to 

compute economic forecasts is still not very common, as this approach incorporates 

advantages as well as difficulties.  In the context of regional forecasting experiments, 

the number of regions for which the forecasts have to be made is generally much 

higher than the number of time periods for which regional data are available.  As a 

result, statistical techniques that are commonly used in time-series analysis – 

generally characterised by a large number of observations over time – are not easily 

generalised and applied to panel data. 
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 Secondly, the problem of neglected spatial heterogeneity might arise.  If 

labour market disturbances are asymmetrically distributed across regions (see, e.g., 

Blanchard and Katz, 1992 and Decressin and Fatás, 1995), a panel estimator imposing 

equal slopes for coefficients that are heterogeneous across regions might lead to 

incorrect forecasts.  On the other hand, it has been found that pooling data generated 

by models with similar, but non-identical parameter structure might improve the 

model’s performance (Hoogstrate et al., 2000). 

 On the third place, regions are open, small and highly interconnected 

economies that show a high degree of interaction with the neighbouring local 

economies.  For this reason, the economic development of each region is probably 

highly affected by (and is likely to have a high impact on) the economic development 

of other regions.  Neglecting such spatial autocorrelation and dependence might result 

in biased estimation coefficients and, therefore, in sub-optimal forecasts.  The use of 

space-time data allows spatial autocorrelation and spatial spillovers to be explicitly 

modelled. 

 There is, however, a variety of statistical tools, so that the need emerges for a 

robustness analysis in an empirical testing.  In the present paper we focus on the 

German regional labour market.  Blien and Tassinopoulos (2001) and Bade (2005) 

have recently proposed new methodologies to compute labour market forecasts for 

German regions.  Blien and Tassinopoulos (2001) suggest a combination of top-down 

and bottom-up techniques to compute short-term forecasts for West-German regions.  

Their forecasts take into account regional autonomous trends that are then combined 

with expectations about the development of single industrial sectors, by means of an 

entropy-optimising procedure.  Bade (2005) uses an extension of the ARIMA 

approach to forecast long-term development of regional shares in national 

employment.  None of these analyses exploits the information about cross-regional 

relationships to improve the results. 

 In the same vein as Blien and Tassinopoulos (2001), our study aims at 

computing short-term forecasts of employment at regional level, using data on West-

German regions as an empirical case study.  However, the estimations in this analysis 

are computed by means of panel data techniques.  In this respect, our study resembles 

more the one by Baltagi and Li (2004), who use panel data on individuals living in the 

US to predict per-capita cigarette consumption, accounting for spatial spillovers and 

spatial heterogeneity.  However, our approach differs from Baltagi and Li (2004) in 
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some aspects.  First, our data do not refer to individuals, but to labour market 

aggregates, averaged at regional level.  Second, while Baltagi and Li (2004) only 

allow for spatial heterogeneity in the intercept terms, we also allow for spatially 

heterogeneous slopes.  Finally, while Baltagi and Li (2004) only evaluate spatial error 

models, we also assess and compare the results of spatial lag models. 

 Our findings confirm that models taking into account spatial autocorrelation 

by means of spatial error models tends to result in forecasts that are on average more 

reliable than those models accounting for spatial autocorrelation by means of spatial 

lags.  This will be demonstrated in the rest of our paper, which is organised as 

follows.  Section 2 highlights the specific regional forecasting problem and suggests a 

range of models that can be used to compute such forecasts.  Next, Section 3 estimates 

and compares the empirical models for German labour markets proposed in Section 2.  

Finally, Section 4 offers concluding remarks. 

 

 

2.  REGIONAL FORECASTS 
 

2.1.  THE FORECASTING PROBLEM 

The aim of the models estimated hereafter is to compute forecasts of the level of 

employment in year t, for a panel of R regions observed over T previous time periods.  

Our forecasting problem may therefore be formalised in the following way: 

 Ert = f(E1r(t-1); E2r(t-1); ... E9r(t-1)) + εrt  (1) 

where the dependent variable Ert is the total number of workers employed in region r 

at time t.  The independent variables are the number of workers employed in each 

economic sector s (s = 1 … 9) in region r at time (t-1) (i.e., E1r(t-1); E2r(t-1); ... E9r(t-1)).  

The term εrt is the remaining disturbance terms, which is assumed to meet the usual 

assumptions.1 

 Finally, f represents the functional form through which the set of inputs is 

combined to approximate the output.  For this analysis we assume a linear additive 

                                                            
1 As a sensitivity analysis, we estimated all models also by adding the average regional wage of full-
time workers employed in region r and time (t-1) among the regressors.  The resulting models are less 
successful in forecasting employment at time t.  The reason for these result might be the rather 
aggregated level of the wage variable, see below.  The results are not shown here but are available upon 
request. 
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relationship.  In the naïve no-change forecasting model, (1) might be specified in the 

following standard form: 

 Ert = Σs Esr(t-1) + εrt = Er(t-1) + εrt ,  (2) 

where the coefficients of E1r(t-1); E2r(t-1); ... E9r(t-1) are all equal to 1.  Such extrapolative 

forecasts are not very sophisticated and call for more advanced statistical tools. 

 

2.2.  MODEL COMPARISON 

The models’ performance is analysed on ex post forecasts for the last three time 

periods for which the data is available (see below), by means of statistical indicators 

common in the time-series literature (see, e.g., Swanson and White, 1997a, 1997b, 

and Fauvel et al., 1999).  However, given the panel structure of the data, for each time 

period t we have R – rather than only one – forecasts, with R being the total number of 

regions (i.e., 326).  The above mentioned indicators are then computed on one-year ex 

post forecasts over all regions, separately for the three time periods for which the ex 

post forecasts are computed.  As a result, our indicators summarise the forecasts’ 

variability across regions, rather than across time.  Thus, the forecasting error for the 

ex post forecast of time t is computed as the difference between the actual total 

number of employees in region r in the year t (Ert) and the total number of employees 

in region r in the year t that is predicted by the model (Ef
rt).  The global error is, 

therefore, computed as the sum across regions of (a function of) the forecasting errors. 

 The statistical indicators we use to compare our models on the ex post forecast 

are the Mean Absolute Error (MAE = 1/R * [Σr |Ert – E f
rt |]); the Mean Absolute 

Percentage Error (MAPE = 1/R * [Σr |(Ert – E f
rt) / Ert |]); and the Mean Square Error 

(MSE = 1/R * [Σr |Ert – E f
rt |2]).  The MSE is then decomposed into its three 

components: the Bias Proportion (BP = (Et – E f
t )2 / MSE); the Variance Proportion 

(VP = ( σ  f - σ )2 / MSE); and the Covariance Proportion (CP = 2σ  fσ [1 - ρ (Et E f
t)] 

/ MSE).  In these last three formulas, Et and Ef
t are, respectively, the average – across 

regions – of the total number of people employed and of its forecast.  The terms σ f 

and σ are the standard deviations – computed across regions – of the forecasted and 

observed values.  Finally, ρ is the correlation coefficient between the forecasted and 

the observed series of values.  Clearly, ρ too is computed on cross-sectional – rather 
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than on time-series – data.2 

 To be suitable for real empirical applications, a forecasting model needs to 

outperform the no-change-forecasting model.  Such a model’s characteristic can be 

easily analysed by means of the U-Theil inequality coefficient (the Theil statistic), 

which is computed as the ratio between the MSE of each model and the MSE of the 

no-change model (Granger and Newbold, 1986).  The proposed model outperforms 

the no-change model when the U-Theil inequality coefficient is lower than 1 (see, 

e.g., Fauvel et al., 1999; Swanson and White, 1997a). 

 To further simplify the comparison among each model’s performance, we 

further compute the average of the above mentioned indicators over the three ex post 

forecasts. 

 

2.3.  NON-SPATIAL MODELS 

To analyse whether taking into account spatial autocorrelation results in more reliable 

forecasts, we first estimate models that do not take into account any form of spatial 

autocorrelation.  For simplicity, we label these models ‘non-spatial’. 

 We estimate such non-spatial models by means of techniques especially 

designed for panel data.  For more details on such techniques we refer to, among 

others, Baltagi (2001) and Hsiao (2003).  Such models can be formalised as: 

 yrt = αr + αt + β’ Zrt-1 + εrt   (3) 

where yrt is employment in region r at time t (the term Ert of equation (1)), Zrt 

contains data on employment in region r, time (t-1), and across sectors s.  The 

components of Zrt-1 are, therefore, E1r(t-1); E2r(t-1); ... E9r(t-1), as indicated in equation 

(1).  The terms αr and αt are region- and time-specific characteristics, respectively, 

while εrt is the remaining error term.  Finally, β is the vector of parameters to be 

estimated. 

 In a recent paper, Diebold and Kilian (2000) find that, in time-series models, 

pre-testing for unit roots is needed for a better selection of the forecasting model.  

                                                            
2 Many statistical tests which have been proposed to compare models’ performance (such as the test 
proposed by Diebold and Mariano, 1995) in time-series analysis, cannot be straightforwardly 
generalised to a panel data setting.  In time-series analysis, the correlation runs only in one direction, 
from past to current and future observations, but not vice versa.  When cross-sections are involved (as 
in the case of panel data), since each region may affect all other regions involved in the estimation, the 
correlation usually runs in more directions.  This might eventually have an effect on the reference 
distribution of the tests, with the consequence that the naïve application of such tests to our forecasts 
would probably lead to misleading results. 



 7

Since the employment data seem to be non-stationary,3 these panel model estimations 

have been computed on the growth rates – rather than on the levels – of the data. 

 There might be some collinearity problems among the explanatory variables in 

(3).  Such collinearity might lead to inflated standard errors of the estimators.  

However, this does not seem to be a big problem here, since the focus of this 

empirical exercise is on comparative forecasting, rather than interpreting.  

Furthermore, from an economic point of view, forcing some of the β coefficients to be 

0 (and therefore assuming that such variables do not have any economic relevance) 

might be a questionable choice. 

 The model in (3) can be estimated by means of the fixed effects (FE) estimator 

or by means or the random effects maximum likelihood (ML) estimator.  In the first 

case, the region-specific characteristics are modelled by means of regional dummies, 

while in the second case both regional effects αr and error term εrt are assumed to be 

random and normally distributed.  In both cases the time-specific characteristics are 

modelled by means of time dummies. 

 By estimating a single regression coefficient for each independent variable, the 

above models implicitly assume the slope of the variables of interest to be invariant 

across regions.  This estimation choice might significantly decrease the time 

necessary to compute such forecasts.  However, in some cases, the estimation of one 

single region-invariant regression coefficient, which might be conceived of as the 

average of region-specific coefficients, might lead to misleading inference.  

Hoogstrate et al. (2000) analyse the problem of pooling data generated by models 

with a similar, but non-identical, parameter structure.  They find that, for short time 

series, the model’s performance can be improved by pooling the data. 

 Nevertheless, when the region-specific characteristics are very dissimilar, 

taking into account some sort of spatial heterogeneity might lead to improved results.  

Since our data set comprises a relatively large number of regions, we can easily 

compute group-specific regressions, allowing for group-specific coefficients.  The 

groups are mutually exclusive, and each region belongs to one of the nine 

urbanisation groups.  In our empirical analysis we will group regions on the basis of 

their degree of urbanisation.  Given the specific structure of German labour market 

                                                            
3 Given the low value of T, a formal test for non-stationarity would not be very powerful. 
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regions, this is a meaningful choice.  This information is available for our data set.  

Equation (3) is then estimated separately for each urbanisation group (ur = 1, …, UR): 

 yur
rt = αr + αt

ur + βur’ Zur
rt-1 + εrt  (4) 

where yur and Zur are all – and only – the observations of the dependent and 

independent variables belonging to that specific urbanisation group.  The estimated 

parameters (αt
ur and βur) are also group-specific.  The regional intercepts, as well as 

the error term, remain region-specific.  The results for the nine urbanisation groups 

are then combined to allow the computation of the statistical indicators. 

 In many empirical studies on labour market phenomena, the geographical unit 

used generally covers a small geographical area that, in many cases, may not coincide 

with a well-defined local labour market area.  In this case, we may expect a high 

number of commuters between neighbouring regions, which may be one cause of 

regional spatial dependence and regional spatial spillovers.  An increasing number of 

econometric techniques have been proposed to detect and remedy such difficulties.  In 

the next section we briefly review some of them. 

 

2.4.  SPATIAL AUTOCORRELATION 

In the model presented in (4) we – roughly – try to account for spatial heterogeneity 

by estimating the coefficients separately for the nine urbanisation groups.  However, 

all the above-mentioned models neglect the problem of spatial dependence.  In our 

specific data set, which consists of small, open and highly interacting regions, spatial 

dependence might represent a relevant problem.  Because of commuting across 

regions, the dependent variable of our model, viz. total employment in region r at time 

t (Ert), is likely to be correlated with both employment and wages of the neighbouring 

regions.  Furthermore, other unobserved regional characteristics might cause 

dependence and/or spatial spillovers across regions. 

 An increasing number of econometric techniques have recently been proposed 

to deal with such misspecification problems.  For more details on spatial econometrics 

we refer to the work by, amongst others, Anselin (1988, 2001, 2002), Anselin and 

Bera (1998), Anselin and Florax (1995), Anselin et al. (2004), and Florax and 

Nijkamp (2005).  We also refer here to the recent special issues of the International 

Regional Science Review and of Geographical Analysis on spatial econometrics (see, 

e.g., Anselin, 2003; Florax and van der Vlist, 2003; LeSage et al., 2004). 
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 The analysis of the above-mentioned model misspecification usually starts 

from the analysis of the model’s residuals.  Specific statistical tests, such as the 

Moran’s I, can be used to formally assess the presence of spatial dependence.  In such 

a test, the spatial structure in the data is modelled by means of a spatial weight matrix 

W.  This matrix, which imposes a structure on the covariance matrix, defines the 

spatial structure of our data set by specifying the neighbourhood of each region 

(Anselin, 2001).  Such neighbourhood linkages can be defined in terms of Boolean (0-

1) contiguity, distances, etc., between pairs of regions. 

 Since, according to Tobler’s first law of geography, “everything is related to 

everything else, but near things are more related than distant things” (Anselin, 1988, 

p. 8), we base our choice of the spatial weight matrix on distances between contiguous 

regions.  Each element of our spatial weight matrix is therefore proportional to the 

inverse of the Euclidean distance between the locations of the corresponding regional 

governments of contiguous regions.  Following Buettner (1999), distances between 

non-contiguous regions are assumed to be infinite and the correspondent elements of 

the spatial weight matrix are therefore 0.  This is not a highly restrictive assumption.  

Analogous to the case of the maximum lag length in temporal autocorrelation, some 

cut-off has to be assumed.  The hybrid spatial weight matrix here is a good 

compromise between a Boolean spatial weight matrix based on contiguity and a full 

distance matrix.4  More in detail, the Moran’s I is computed as: 

 
)()(
)()(

µµ
µµ

−−
−−

=
xx
xWx

'
'

S
NI    (5) 

where x is a vector containing the realisations of the variable of interest; µ is its mean; 

and W the spatial weight matrix.  N is the number of observations; and S is a 

standardisation factor, coinciding with the sum of all elements in the weight matrix.  

The Moran’s I has values between minus 1 and plus 1.  A value of minus 1 indicates 

perfect negative correlation, suggesting that areas with values of x higher than the 

average are generally surrounded by areas with values of x lower than the average, 

and vice versa.  A value of 1 indicates perfect positive correlation, suggesting the 

presence of clusters of high- and low-values of x.  In such a situation, indeed, areas 

                                                            
4 A full distance matrix is usually not ideal, because the positive dependence for regions that are close 
in space averages out with the negative dependence (e.g., based on some sort of hierarchical pattern) 
for regions further away.  In their meta-analysis of simulation studies analysing the performance of 
tests for spatial dependence in linear regression studies, Florax and de Graaff (2004) find that the 
power of tests such as Moran’s I is generally higher for relatively sparse weight matrices. 
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with values of x higher than the average are indeed generally surrounded by areas 

with values of x higher than the average, and vice versa.  A value of 0 indicates the 

absence of spatial correlation. 

 When x is not normally distributed, the asymptotic distribution of Moran’s I, 

needed to statistically test the significance of I, is unknown, and has to be 

approximated using a randomisation approach or to be generated using a permutation 

approach (see, for example, Anselin, 1988). 

 If not correctly modelled, the spatial autocorrelation in the employment 

variable, which is the target of our forecasting experiment, might have an influence on 

the accuracy of the non-spatial forecasting models that we proposed in the previous 

sections.  Using the Moran statistic, we can analyse whether the proposed models are 

able to correctly represent the spatial relationships between regions.  An insignificant 

value of the Moran statistic computed on the model’s forecasting errors might suggest 

that the errors are randomly distributed across regions.  On the other hand, a 

significant value of the Moran statistic suggests that the model is not able to correctly 

identify spatial clusters in the data.  This means, therefore, that the positive and the 

negative forecasting errors are spatially clustered.  In this case, there might be room 

for model improvement by means of spatial econometric techniques. 

 However, even when the forecasting errors do not show significant spatial 

autocorrelation, then taking into account spatial dependence and spillovers by means 

of spatially-lagged variables or a spatial error structure might improve the forecasting 

performance of the models.  It is important to note that in this context the Moran’s I 

statistic should not be regarded as a diagnostic test for model misspecification.  Being 

computed on the models’ forecasting errors rather than on the models’ residuals, the 

Moran’s I can only suggest directions in which to improve the model’s forecasting 

performance. 

 The spatial autocorrelation of the models’ residuals suggests the presence of 

some sort of misspecification, which might be reduced either by adding spatially-

lagged variables to the initial model (spatial lag models), or by formally modelling the 

residual spatial autocorrelation (spatial error models).  A model combining these two 

modelling strategies might also be estimated.  Specific tests are commonly used to 

discriminate between these three options (see, e.g., Anselin et al., 1996).  However, as 

will be shown in the following sections, in our case not all these options are feasible. 
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2.5.  SPATIAL MODELS 

In this section we suggest some ways to take into account spatial autocorrelation in 

the forecasting process.  For simplicity, we label the models in this section ‘spatial’. 

 First, we may extend the structure of the above non-spatial models with spatial 

lags of the dependent and/or explanatory variable.  The spatial lag model can be 

formalised by adding the spatially weighted variable on the right-hand side of (3), 

thus obtaining: 

 yrt = αr + αt + β’ Zr(t-1) + γ Σj (wjr Wagesjt) + εrt  (6) 

where equation (6) differs from equation (4) only in regard to the term Σj (wjr 

Wagesjt), which is the ‘spatial lag’ of wages in region r at time t and γ, which is the 

corresponding vector to be estimated.5  The weights wjr are the elements of the above 

mentioned weight matrix W.  In order to compute the spatial lags, we adopt the 

assumption of contemporaneous spatial correlation, but an absence of direct 

intertemporal spatial dependence.  The spatial lag is then simply computed by pre-

multiplying the wage vector at each time t by the weight matrix W. 

 However, because the focus of our analysis is on forecasting, the term Σj (wjr 

Wagesjt) is not known at time t.  We therefore model spatial effects by including 

spatial lags of average wages at time (t-1) rather than t (i.e. Σj (wjr Wagesjt-1)): 

 yrt = αr + αt + β’ Zr(t-1) + γ Σj (wjr Wagesjt-1) + εrt  (7) 

The term Σj (wjr Wagesjt-1) should then capture the effect that or wages in the 

neighbouring regions have on regional employment of the subsequent year.  This 

specification might be seen as a special case of the model proposed by Elhorst (2001), 

in which the coefficients of the spatial lags at time t are set equal to 0. 

 Similarly to the non-spatial case, the spatially lagged variable should not bring 

in additional endogeneity problems (see, e.g., Anselin, 1988).  The model in (7) can 

be estimated by means of the fixed effects estimator or by means of the random 

effects maximum likelihood.  As an alternative to the estimation of the model on the 

complete data set, we can also in this case assume (limited) spatial heterogeneity by 

estimating the model separately on different groups of regions, by rewriting (7) in a 

                                                            
5 As a sensitivity analysis, we also computed models using the spatial lag of total employment rather 
than the spatial lag of average daily wages.  Alternatively, we computed models using both the spatial 
lag of total employment and the spatial lag of average daily wages.  The resulting models perform 
worse than the models in which we only add the spatial lag of average daily wages.  The results are not 
shown here but are available on request. 
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similar way as (4).  The spatial lag in (7) is computed by pre-multiplying average 

daily wages in region r and time t by the spatial weight matrix.  As a result, the term 

Σj (wjr Wagesjt-1) can be interpreted as a weighted average of the variable Wages in the 

neighbouring regions.  Of course, this variable does not change when we compute the 

group estimations.  Also in such a situation, all neighbours of region r, belonging to 

the urbanisation group ur are taken into account in the spatial lag. 

 The second estimation strategy consists in modelling spatial spillovers and 

spatial autocorrelation by means of a spatial error structure in the model, in an 

autoregressive way as proposed in Elhorst (2003): 

 yrt = αr + αt + β’ Zrt-1 + urt  

 with urt = λ Σj (wjr ujt) + εrt   (8) 

where the error term (urt) is assumed to be spatially autocorrelated, with spatial 

autocorrelation parameter λ.  As before, wjr are the elements of the weight matrix W, 

and εrt is the remaining disturbance.  The variance-covariance matrix that can be 

derived from the error structure modelled in (8) assumes the presence of global 

autocorrelation.  In such a situation, every region is assumed to be correlated with 

each other region in the spatial system; the correlation is assumed to be higher for 

regions that are closer to each other (Anselin and Cho, 2002). 

 The advantage of this specification strategy, compared with the use of 

spatially lagged dependent or independent variables like in (7), is that in (8) we make 

no assumption on which variable might be responsible for the spatial autocorrelation.  

Furthermore, by using (8) we can overcome the problem of the unavailability of the 

data needed to compute the spatial lag at time t.  To estimate the spatial error model, 

however, we have to adopt the further assumption of normality of the residuals and to 

use maximum likelihood techniques (Anselin, 1988 and Elhorst, 2003).  The spatial 

error model is therefore estimated by means of maximum likelihood (see Elhorst, 

2003). 

 As before, the model can be estimated on the whole data set, under the 

assumption of homogeneous regression coefficients, or separately for distinct 

urbanisation groups.  However, in this latter case the urbanisation-heterogeneous 

coefficients are not computed by means of separate group estimations since this 

strategy would make use of a modified weight matrix W, in which the neighbours that 

do not belong to the same group are dropped.  We allow instead for heterogeneous 
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regression coefficients by multiplying the dependent and independent variables by 

dummies identifying each group (see, e.g., Verbeek, 2000). 

 After this review of various spatial-statistical issues, the next section will 

introduce the data set for our empirical analysis and will show the estimation results 

of the models introduced above. 

 

 

3.  EMPLOYMENT FORECASTS FOR WEST-GERMAN REGIONS 
 

3.1.  THE DATA SET 

The data used in this analysis is part of a bigger data base gathered by the German 

Institute for Employment Research, IAB (Institut für Arbeitsmarkt und 

Berufsforschung).  The information is collected from firms and contains micro-data 

about all workers employed in Germany who are covered by the social insurance 

system.  Since such information was originally collected for the administrative 

purposes of the social security system, the measurement errors affecting our data are 

probably rather low and not systematic.  For more information on this IAB data base, 

we refer to Blien and Tassinopoulos (2001). 

 We use information about labour market aggregates at the regional level, 

which is structured as a panel of 326 West German regions covering a period of 16 

years, from 1987 to 2002.  Because of its location in the East, the region of Berlin is 

excluded from the data set.  The variables available are the number of full-time 

workers employed each year on June 30, classified in nine economic sectors.6  

Average regional daily wages earned by such full-time workers are available as well.7 

 To group regions that might have a similar labour market behaviour, we 

adopted the BfLR/BBR (Bundesforschungsanstalt für Raumordnung und 

Landeskunde/ Bundesanstalt für Bauwesen und Raumordnung, Bonn) definition of 

“type of economic region”.  This classification divides regions on the basis of the nine 

urbanisation groups discussed in the previous sections.  The classification is 

                                                            
6 These are: primary sector; industry goods; consumer goods; food manufacturing; construction; 
distributive services; financial services; household services; and social services. 
7 Sectoral wages should be preferred for our analysis than wages averaged by regions and sectors.  
However, such kind of information is not present in our data set.  The use of such variable in our 
forecasting exercise might present some problems since average regional wages partly reflect the 
sectoral composition of regional employment. 
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represented by an index ranging from one to nine (see Table 1), and is computed 

according to the size of population and to the centrality of the location of each region 

(for more details we refer to Bellmann and Blien, 2001). 

 

TABLE 1 ABOUT HERE 

 

 These data are used to compute one-step-ahead ex post forecasts of the volume 

of regional employment in 2000, 2001 and 2002.  All these forecasts are computed on 

the same number of observations.  The forecasts for the year 2000 are computed using 

data from 1987 to 1999, the forecasts for the year 2001 are computed using data from 

1988 to 2000, and the forecasts for the year 2002 are computed using data from 1989 

to 2001.  This practice implies that the parameters are re-estimated for each ex post 

forecast and might therefore be different over time.  As indicated above, multiple ex 

post forecasts are necessary to evaluate the stability of the model performance over 

time. 

 In the next section we summarise the forecasting results of the non-spatial 

models and we compare them with the results of the models extended to take into 

account spatial dependence and spatial spillovers. 

 

3.2.  NON-SPATIAL MODELS 

In this section we estimate the non-spatial panel models as discussed in Section 2.3, 

using the data on West-German regions introduced above.8  Baltagi and Li (2004) 

show how to compute the predictions of both spatial and non-spatial models. 

 We first estimate the model in (3) using a fixed-effects estimator (FE).  The 

results of the three ex post forecasts, as well as the average model performance are 

shown in the first column of Table 2.  While the model in (3) only allows for regional 

heterogeneity in the intercept term, the model in (4), also allows for some spatial 

heterogeneity in the regression coefficients.  The second column of Table 2 shows the 

results of the model in (4) estimated separately for the nine types of regions 

introduced in the previous section (FE-1-9). 

                                                            
8 The models in this paper have been estimated using different softwares.  The non-spatial models and 
the models using spatial lags have been estimated using Stata7, while the spatial error models have 
been computed using the Matlab ‘sem_panel’ routine by Paul Elhorst, available at 
http://www.eco.rug.nl/~elhorst/.  The Moran statistics have mainly been computed with Spacestat. 
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 The random effects estimator is usually considered as an alternative to the 

fixed effects estimator.  However, our data refer to regions rather than to individuals.  

In this case the data refer to the whole population of 326 regions, and the regional-

specific effects (αr) can hardly be interpreted as a random variable.  As expected, the 

Hausman (1978) test rejects the random effects in favour of the fixed effects model.  

Furthermore, also Baltagi and Li (2004), using individual data to predict cigarette 

consumption, find that the fixed effects performs slightly better than the random 

effects model. 

 To allow an easier comparison with the spatial models, we further estimate 

models (3) and (4) by means of random effects maximum likelihood estimators.  The 

results of the model computed on the whole data set (ML) are shown in column (3) of 

Table 2, while the results of the model allowing for some regional heterogeneity in the 

regression coefficients (ML-1-9) are shown in column (4). 

 

TABLE 2 ABOUT HERE 

 

 The results of the four models seem to exhibit a rather heterogeneous 

behaviour.  On average the maximum likelihood estimations seem to perform better 

than the fixed effects estimations.  The models accounting for spatial heterogeneity 

seem to perform slightly worse than the corresponding models assuming spatial 

homogeneity.  This result suggests that there might not be significant differences in 

the behaviour of urban versus rural regions, and that pooling such heterogeneous 

coefficients might therefore lead to more reliable forecasts. 

 Most of the models offer better forecast than the naïve no-change model both 

for 2000 and 2001, while none of them is able to perform the naïve no-change model 

for 2002.  This result is rather surprising because the squared errors of the models 

forecasts in 2002 are rather low, compared with the errors for the remaining years.  

This might suggest that in 2002 all models tend to overestimate (in absolute terms) the 

changes in regional employment, and that the trend line in the employment 

development might be flattening, and that it might soon change its sign.  In such a 

situation the naïve model offers the best forecasts. 
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 On average, the best model of Table 2 is the model estimated in column (3).  

This model has the lowest absolute and squared errors.  Furthermore, it seems to be 

the only one that, on average, is able to outperform the naïve no-change model. 

 By largely neglecting the presence of spatial autocorrelation and spatial 

spillovers, the models shown in Table 2 may represent sub-optimal solutions to the 

forecasting problem, at least in case of panel data.  In the next section we will extend 

these non-spatial models to correct for spatial spillovers and spatial autocorrelation.  

We start however, with an analysis of the spatial autocorrelation of the variable of 

interest and of the forecasting errors of the non-spatial models. 

 

3.3.  SPATIAL AUTOCORRELATION 

When the data is collected at the administrative level, the actual unit of analysis might 

not correspond to the theoretically correct one.  In our case, the 326 West German 

regions are likely not to correspond to a well-defined “local labour market area” 

concept (see Fischer and Nijkamp, 1987).  Furthermore, local labour market areas 

might be subject to changes over time: for example, due to improvements in the area’s 

accessibility level. 

 In our specific data set, which consists of small interacting regions, spatial 

dependence might represent a relevant issue.  Because of commuting across regions, 

the dependent variable of our model, viz. total employment in region r at time t (Ert), 

is likely to be correlated with both employment and wages of the neighbouring 

regions.  Furthermore, other unobserved regional characteristics might cause 

dependence and/or spatial spillovers across regions.  The presence of spatial 

dependence, represented by spatial clusters, can be easily spotted by mapping the 

variable of interest. 

 Figure 1 shows the employment levels of the 326 West German districts in the 

year 2000.  The figures for 2000 suggest that high-employment regions tend to be 

located close to other high-employment regions, while low-employment regions tend 

to be located close to other low-employment regions.  These clusters of high- and 

low-employment regions might indicate the existence of positive spatial 

autocorrelation across the observations of our data set. 

 

FIGURE 1 ABOUT HERE 
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 To statistically assess the presence of spatial autocorrelation in the variable of 

interest, we can compute the Moran test.  Table 3 shows the Moran’s I statistic 

computed on employment – levels, changes and growth rates – data.  The x vector of 

equation (5), therefore, contains data on regional employment levels or regional 

employment growth rates, alternatively.  The probabilities in Table 3 are computed 

using the randomisation approach.  The Moran statistics computed on the level data 

are all positive and significant, supporting the conclusions from Figure 1, and 

suggesting the presence of clusters of high- and clusters of low-employment regions.  

The Moran’s I computed on the employment changes growth are almost always 

significant.  This clearly suggests the presence of spillovers across regional labour 

markets. 

 

TABLE 3 ABOUT HERE 

 

 To analyse whether the proposed non-spatial models are able to correctly 

model the spatial characteristics of the employment variable, we have computed the 

Moran’s I statistic on the forecasting errors of each model.  Because of the different 

regional sizes, the Moran’s I statistic is computed on the relative forecasting errors 

(divided by total regional employment).  Table 4 shows the Moran’s I statistic 

computed on the relative forecasting errors of the models compared in Table 2 for the 

three ex post forecasts.  The test shows that, in many cases, the models are unable to 

capture the spatial autocorrelation in the employment variable, thus showing highly 

significant spatial autocorrelation in the relative forecasting errors.  In this respect, the 

heterogeneous maximum likelihood model (ML-1-9) shows a slightly better 

performance than the other models. 

 The positive (and significant) coefficient of the Moran statistics in Table 4 

suggest that the forecasting errors are positively correlated over space: regions for 

which a positive forecasting error is made, tend to be located close to other regions for 

which the model made a positive error, and vice versa. 

 

TABLE 4 ABOUT HERE 
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 The results of Table 4 suggest that there might still be room for improvement 

of the proposed model, by means of spatial econometric techniques.  By including 

further (spatial) variables among the regressors, we might be able to improve the 

performance of the proposed non-spatial models. 

 In the next subsection we will estimate the spatial models proposed in the 

previous section, and evaluate the relevance of econometric techniques in improving 

the forecasting performance of non-spatial models. 

 

3.4.  SPATIAL MODELS 

In this section we estimate the spatial panel models as suggested in Section 3.4, 

starting from the spatial lag model in (7), in which we include the spatial lag of 

average daily wages.  The models using the spatial lag of wages are denoted by the 

superscript ‘W’.  The fixed effects estimations computed on the whole data set (FEW) 

are shown in the first column of Table 5, while fixed effects estimations computed on 

the nine urbanisation groups (FEW-1-9) are shown in the second column.  The 

maximum likelihood estimations computed on the whole data set (MLW) are in 

column (3), while maximum likelihood estimations computed on the nine urbanisation 

groups (MLW-1-9) are in column (4). 

 The results in Table 5 show that the models accounting for spatial correlation 

by means of the spatial lag generally perform at most slightly better than the 

corresponding ‘non-spatial’ models.  The only exception is the model in the first 

column of Table 5 (FEW), which seem to outperform its non-spatial counterpart for 

two out of three ex post forecasts.  While almost all models seem to outperform the 

naïve no-change model for the forecasts of 2000 and 2001, all Theil’s U statistics for 

2002 are higher than 1. 

 The average performance of the four models over the three ex post forecasts 

shows that the maximum likelihood models perform better than the fixed effects ones, 

and that the models assuming spatial homogeneity show better results than the models 

accounting for it.  Also in this case the best model is the model in column (3) which 

seems the only one able to outperform the naïve no-change model.  The general 

conclusion, however, is that the spatial lag models do not seem to outperform the non-

spatial ones. 
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TABLE 5 ABOUT HERE 

 

 The last two columns of Table 5 show the results of the models in which 

spatial autocorrelation is modelled in the error term rather than by using spatially 

lagged variables.  While the model in column (5) is computed on the whole data set, 

the model in column (6) is computed separately for the nine types of regions, as 

explained in the previous sections.  The two spatial error models clearly outperform 

the other model proposed, in terms of both absolute and squared errors.  The spatial 

error models clearly outperform also the naïve no-change model in almost all cases.  

Finally, these last results confirm the previous finding that pooling all regions, thus 

neglecting the possible spatial heterogeneity, leads to better results.  The result that 

homogeneous models offer better forecasts than the heterogeneous ones might be due 

to the choice of the variable that is supposed to drive the heterogeneity (the 

urbanisation level of each region). 

 We can finally conclude that spatial econometric techniques seem to improve 

the forecasting performance of models using space-time data.  More specifically, 

modelling spatial autocorrelation in the residuals appears to be a choice that produces, 

on average, the best results. 

 

 

4.  CONCLUDING REMARKS 

 

In this paper we propose and evaluate different statistical techniques – namely spatial 

lag and spatial error models – to correct for misspecification due to neglected spatial 

autocorrelation, in the context of regional forecasts.  We estimate and compare a 

number of different models designed to compute short-term ex post forecasts of 

regional employment in 326 West German regions.  The main purpose of our analysis 

has been to assess whether spatial econometric techniques – namely spatial lag and 

spatial error models – represent a convenient way to improve the forecasting 

performance of non-spatial models. 

 Our results suggest the superimposed spatial structure that is required for the 

estimation of spatial lag and spatial error models – represented by means of a 

contiguity weight matrix – improves the forecasting performance of the non-spatial 
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forecasting models.  Furthermore, taking into account spatial autocorrelation by 

means of spatial error models results in forecasts that are on average more reliable 

than those computed by means of models using spatial lags.  Therefore, the general 

conclusion is that in case of panels characterised by a large number of cross-sections, 

but a small number of observations over time, the forecasts can be improved by 

simply taking into account cross-sectional spatial autocorrelation. 

 This analysis shows that spatial econometric techniques might represent a 

valid tool to improve forecasts at regional level.  However, our empirical application 

is limited to a case study of employment forecasts for West German regions, so that 

the results presented in this paper might be specific to the area and variables under 

investigation.  Future research should further investigate in particular the issue of 

neglected spatial autocorrelation in forecasts by using simulation techniques, in order 

to obtain results that can be generalised to different situations. 
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TABLES 
 

Table 1: Aggregation of West-German regions in nine types of regions 

Group Type No. of districts 
A. Regions with urban agglomeration (118 regions) 
 1. Central cities 39 
 2. Highly-urbanised districts 42 
 3. Urbanised district 23 
 4. Rural districts 14 
B. Regions with tendencies towards agglomeration (119 regions) 
 5. Central cities 21 
 6. Highly-urbanised districts 61 
 7. Rural districts 37 
C. Regions with rural features (90 regions) 
 8. Urbanised districts 43 
 9. Rural districts 47 
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Table 2: Comparison of the non-spatial models’ ex post forecasts in the 326 regions 

Statistical Indicator (1) (2) (3) (4) 
Ex post forecasts for the year 2000 

 FE FE-1-9 ML ML-1-9 
MAE 1308 1990 835 844
MAPE 0.01515 0.02348 0.01114 0.01119
RMSE 3208 4391 2202 2134
MSE 10289123 19282633 4850695 4554433
BP 0.12130 0.15402 0.01212 0.02469
VP 0.63364 0.67000 0.48124 0.45756
CP 0.24777 0.17858 0.50968 0.52075
Theil’s U 1.01231 1.38582 0.69507 0.67350

Ex post forecasts for the year 2001 
 FE FE-1-9 ML ML-1-9 

MAE 1249 1270 917 1051
MAPE 0.01558 0.01937 0.01547 0.01604
RMSE 2811 1895 1810 1995
MSE 7901367 3590168 3275144 3980244
BP 0.13708 0.05886 0.12090 0.20192
VP 0.49369 0.04749 0.00044 0.19968
CP 0.37188 0.89655 0.88137 0.60086
Theil’s U 1.36249 0.91842 0.87720 0.96703

Ex post forecasts for the year 2002 
 FE FE-1-9 ML ML-1-9 

MAE 736 1541 696 914
MAPE 0.01203 0.02106 0.01167 0.01298
RMSE 1194 2891 1213 1955
MSE 1424597 8355516 1472310 3823633
BP 0.11664 0.20610 0.10624 0.10825
VP 0.19107 0.54455 0.17436 0.56444
CP 0.69500 0.25179 0.72216 0.33006
Theil’s U 1.18208 2.86279 1.20172 1.93660

Average performance over the three periods 
 FE FE-1-9 ML ML-1-9 

MAE 1097 1600 816 936
MAPE 0.01425 0.02130 0.01276 0.01340
RMSE 2404 3059 1742 2028
MSE 6538363 10409439 3199383 4119437
BP 0.12501 0.13966 0.07975 0.11162
VP 0.43947 0.42068 0.21868 0.40723
CP 0.43822 0.44231 0.70440 0.48389
Theil’s U 1.18563 1.72234 0.92466 1.19238
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Table 3: Spatial autocorrelation in employment across West German regions 

 Employment Levels Employment Growth Employment Changes 
Year Moran’s I Probability Moran’s I Probability Moran’s I Probability 
1987 0.1223*** 0.0006 -- -- -- -- 
1988 0.1221*** 0.0006 0.0448 0.2063 0.1246*** 0.0007 
1989 0.1239*** 0.0005 0.0670* 0.0663 0.1579*** 0.0000 
1990 0.1254*** 0.0004 0.0284 0.4049 0.1560*** 0.0000 
1991 0.1256*** 0.0004 0.2960*** 0.0000 0.1477*** 0.0000 
1992 0.1256*** 0.0004 0.0068 0.7947 0.1268*** 0.0005 
1993 0.1237*** 0.0005 0.1941*** 0.0000 0.2266*** 0.0000 
1994 0.1221*** 0.0006 0.2229*** 0.0000 0.1969*** 0.0000 
1995 0.1250*** 0.0005 0.0898** 0.0158 0.0341 0.3085 
1996 0.1263*** 0.0004 0.0904** 0.0152 0.0457 0.1845 
1997 0.1271*** 0.0004 0.1185*** 0.0014 0.0729** 0.0434 
1998 0.1282*** 0.0003 0.0818** 0.0272 0.0483 0.1679 
1999 0.1281*** 0.0003 0.0445 0.2105 0.0981*** 0.0063 
2000 0.1252*** 0.0004 0.1229*** 0.0011 0.0460 0.1615 
2001 0.1232*** 0.0005 0.1777*** 0.0000 0.1176*** 0.0008 
2002 0.1231*** 0.0005 0.1504*** 0.0001 0.1025*** 0.0056 

* significant at 10%; ** significant at 5%; *** significant at 1% 

 

 

 

 

 

 

 

Table 4: Spatial autocorrelation in the relative forecasting errors of the models in Table 2 (as 

measured by the Moran’s I statistic 

 (1) (2) (3) (4) 
 FE FE-1-9 ML ML-1-9 

2000 0.0748** 0.0818** 0.0698* 0.0426 
Prob. (0.0425) (0.0274) (0.0577) (0.2332) 
2001 0.1148*** 0.0604 0.1096*** 0.0949** 
Prob. (0.0021) (0.1002) (0.0033) (0.0107) 
2002 0.0325 0.1723*** 0.0277 0.0429 
Prob. (0.3538) (0.0000) (0.4220) (0.2305) 

* significant at 10%; ** significant at 5%; *** significant at 1% 
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Table 5: Comparison of the non-spatial models’ ex post forecasts in the 326 regions 
Statistical 
Indicator 

(1) (2) (3) (4) (5) (6) 

Ex post forecasts for the year 2000 
 FEW FEW-1-9 MLW MLW-1-9 SEM SEM-1-9 

MAE 873 1826 835 860 591 564
MAPE 0.01099 0.02292 0.01114 0.01136 0.00986 0.00944
RMSE 2373 4033 2203 2147 897 854
MSE 5629641 16268604 4851938 4608754 805279 728655
BP 0.02688 0.16241 0.01215 0.02331 0.31960 0.18654
VP 0.51956 0.58878 0.48133 0.44873 0.18727 0.08304
CP 0.45655 0.25139 0.50956 0.53096 0.49523 0.73292
Theil’s U 0.74880 1.27291 0.69515 0.67751 0.28320 0.26939

Ex post forecasts for the year 2001 
 FEW FEW-1-9 MLW MLW-1-9 SEM SEM-1-9 

MAE 886 926 917 1047 534 614
MAPE 0.01485 0.01427 0.01547 0.01600 0.00874 0.01025
RMSE 1804 1857 1811 1998 850 911
MSE 3253780 3448667 3278526 3993201 721751 829994
BP 0.08304 0.01039 0.12057 0.19980 0.22498 0.31301
VP 0.00679 0.00141 0.00041 0.20017 0.20932 0.16413
CP 0.91299 0.99125 0.88173 0.60249 0.56809 0.52497
Theil’s U 0.87433 0.90014 0.87765 0.96860 0.41179 0.44159

Ex post forecasts for the year 2002 
 FEW FEW-1-9 MLW MLW-1-9 SEM SEM-1-9 

MAE 1166 1129 695 920 514 573
MAPE 0.0185 0.0180 0.0117 0.01313 0.00840 0.00885
RMSE 1946 1790 1212 1963 847 1043
MSE 3785102 3205296 1467973 3854350 717296 1088796
BP 0.3209 0.0562 0.1059 0.10678 0.18796 0.17969
VP 0.4153 0.0344 0.1738 0.55914 0.23298 0.45310
CP 0.2658 0.9123 0.7231 0.33683 0.58155 0.36973
Theil’s U 1.9268 1.7731 1.1999 1.94436 0.83879 1.03342

Average performance over the three periods 
 FEW FEW-1-9 MLW MLW-1-9 SEM SEM-1-9 

MAE 975 1294 816 943 546 583
MAPE 0.01479 0.01840 0.01275 0.01350 0.00900 0.00951
RMSE 2041 2560 1742 2036 865 936
MSE 4222841 7640856 3199479 4152102 748108.8 882481.6
BP 0.14362 0.07634 0.07952 0.10996 0.24418 0.22642
VP 0.31390 0.20820 0.21851 0.40268 0.20986 0.23342
CP 0.54511 0.71831 0.70480 0.49009 0.54829 0.54254
Theil’s U 1.18332 1.31539 0.92425 1.19682 0.51126 0.58147
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Figure 1: Employment levels in West German regions 

 

 


