1,450 research outputs found

    Non-Hermitian shortcut to stimulated Raman adiabatic passage

    Get PDF
    We propose a non-Hermitian generalization of stimulated Raman adiabatic passage (STIRAP), which allows one to increase speed and fidelity of the adiabatic passage. This is done by adding balanced imaginary (gain/loss) terms in the diagonal (bare energy) terms of the Hamiltonian and choosing them such that they cancel exactly the nonadiabatic couplings, providing in this way an effective shortcut to adiabaticity. Remarkably, for a STIRAP using delayed Gaussian-shaped pulses in the counter-intuitive scheme the imaginary terms of the Hamiltonian turn out to be time independent. A possible physical realization of non-Hermitian STIRAP, based on light transfer in three evanescently-coupled optical waveguides, is proposed.Comment: 7 pages, 4 figure

    Quantum simulation of the Riemann-Hurwitz zeta function

    Full text link
    We propose a simple realization of a quantum simulator of the Riemann-Hurwitz (RH) \zeta\ function based on a truncation of its Dirichlet representation. We synthesize a nearest-neighbour-interaction Hamiltonian, satisfying the property that the temporal evolution of the autocorrelation function of an initial bare state of the Hamiltonian reproduces the RH function along the line \sigma+i \omega t of the complex plane, with \sigma>1. The tight-binding Hamiltonian with engineered hopping rates and site energies can be implemented in a variety of physical systems, including trapped ion systems and optical waveguide arrays. The proposed method is scalable, which means that the simulation can be in principle arbitrarily accurate. Practical limitations of the suggested scheme, arising from a finite number of lattice sites N and from decoherence, are briefly discussed.Comment: 6 pages, 3 figure

    Field-induced barrier transparency of Bloch waves in tight-binding lattices

    Full text link
    A rectangular potential barrier for a Bloch particle in a tight-binding lattice is shown to become fully transparent by the application of a strong ac field with appropriate amplitude and frequency. Such a curious phenomenon bears some connection with the field-induced barrier transparency effect known for freely-moving particles scattered by an ac-driven rectangular barrier; however, for a Bloch particle transparency is not related to a resonant tunnneling process across the cycle-averaged oscillating potential barrier, as for the freely-moving quantum particle. The phenomenon of field-induced transparency is specifically discussed here for photonic transport in waveguide arrays and demonstrated by full numerical simulations of the paraxial (Schr\"{o}dinger) wave equation beyond the tight-binding approximation

    Multistable Pulse-like Solutions in a Parametrically Driven Ginzburg-Landau Equation

    Full text link
    It is well known that pulse-like solutions of the cubic complex Ginzburg-Landau equation are unstable but can be stabilised by the addition of quintic terms. In this paper we explore an alternative mechanism where the role of the stabilising agent is played by the parametric driver. Our analysis is based on the numerical continuation of solutions in one of the parameters of the Ginzburg-Landau equation (the diffusion coefficient cc), starting from the nonlinear Schr\"odinger limit (for which c=0c=0). The continuation generates, recursively, a sequence of coexisting stable solutions with increasing number of humps. The sequence "converges" to a long pulse which can be interpreted as a bound state of two fronts with opposite polarities.Comment: 13 pages, 6 figures; to appear in PR

    Autoprotolysis constants in nonaqueous solvents and aqueous organic solvent mixtures

    Get PDF
    The recent IUPAC document on standardization of pH measurements in nonaqueous solvents and aqueous-organic solvent mixtures (P.A.C. 57 865 (1985)) underlines the importance of the autoprotolysis constant, K, which defines the normal range of pH in the relevant solvent. The recommended e.m.f. method of determination and the standard states implied by different K definitions are duly focused. This compilation is articulated in two Tables the first of which reports K data for 100% pure solvents mostly at 298.15 K and the other concerns binary aqueous-organic mixtures of different compositions and at various temperatures

    Loschmidt echo and fidelity decay near an exceptional point

    Get PDF
    Non-Hermitian classical and open quantum systems near an exceptional point (EP) are known to undergo strong deviations in their dynamical behavior under small perturbations or slow cycling of parameters as compared to Hermitian systems. Such a strong sensitivity is at the heart of many interesting phenomena and applications, such as the asymmetric breakdown of the adiabatic theorem, enhanced sensing, non-Hermitian dynamical quantum phase transitions and photonic catastrophe. Like for Hermitian systems, the sensitivity to perturbations on the dynamical evolution can be captured by Loschmidt echo and fidelity after imperfect time reversal or quench dynamics. Here we disclose a rather counterintuitive phenomenon in certain non-Hermitian systems near an EP, namely the deceleration (rather than acceleration) of the fidelity decay and improved Loschmidt echo as compared to their Hermitian counterparts, despite large (non-perturbative) deformation of the energy spectrum introduced by the perturbations. This behavior is illustrated by considering the fidelity decay and Loschmidt echo for the single-particle hopping dynamics on a tight-binding lattice under an imaginary gauge field.Comment: 11 pages, 6 figures, to appear in Annalen der Physi

    Non-Markovian Decay and Lasing Condition in an Optical Microcavity Coupled to a Structured Reservoir

    Get PDF
    The decay dynamics of the classical electromagnetic field in a leaky optical resonator supporting a single mode coupled to a structured continuum of modes (reservoir) is theoretically investigated, and the issue of threshold condition for lasing in presence of an inverted medium is comprehensively addressed. Specific analytical results are given for a single-mode microcavity resonantly coupled to a coupled resonator optical waveguide (CROW), which supports a band of continuous modes acting as decay channels. For weak coupling, the usual exponential Weisskopf-Wigner (Markovian) decay of the field in the bare resonator is found, and the threshold for lasing increases linearly with the coupling strength. As the coupling between the microcavity and the structured reservoir increases, the field decay in the passive cavity shows non exponential features, and correspondingly the threshold for lasing ceases to increase, reaching a maximum and then starting to decrease as the coupling strength is further increased. A singular behavior for the "laser phase transition", which is a clear signature of strong non-Markovian dynamics, is found at critical values of the coupling between the microcavity and the reservoir.Comment: to appear in Phys. Rev. A (December 2006 issue

    Coherent tunneling by adiabatic passage in an optical waveguide system

    Full text link
    We report on the first experimental demonstration of light transfer in an engineered triple-well optical waveguide structure which provides a classic analogue of Coherent Tunnelling by Adiabatic Passage (CTAP) recently proposed for coherent transport in space of neutral atoms or electrons among tunneling-coupled optical traps or quantum wells [A.D. Greentree et al., Phys. Rev. B 70, 235317 (2004); K. Eckert et al., Phys. Rev. A 70, 023606 (2004)]. The direct visualization of CTAP wavepacket dynamics enabled by our simple optical system clearly shows that in the counterintuitive passage scheme light waves tunnel between the two outer wells without appreciable excitation of the middle well.Comment: submitted for publicatio
    corecore