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We propose a non-Hermitian generalization of stimulated Raman adiabatic passage (STIRAP),
which allows one to increase speed and fidelity of the adiabatic passage. This is done by adding
balanced imaginary (gain/loss) terms in the diagonal (bare energy) terms of the Hamiltonian and
choosing them such that they cancel exactly the nonadiabatic couplings, providing in this way
an effective shortcut to adiabaticity. Remarkably, for a STIRAP using delayed Gaussian-shaped
pulses in the counter-intuitive scheme the imaginary terms of the Hamiltonian turn out to be time
independent. A possible physical realization of non-Hermitian STIRAP, based on light transfer in
three evanescently-coupled optical waveguides, is proposed.
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I. INTRODUCTION

Stimulated Raman adiabatic passage (STIRAP) is one
of the most popular tools, used for manipulation of quan-
tum structures [1]. This method transfers population adi-
abatically between two states |1〉 and |3〉, in a three-level
quantum system, without populating the intermediate
state |2〉. The applications of STIRAP cover a huge part
of contemporary physics: coherent atomic excitation [2],
control of chemical reactions [3], quantum information
processing [4], coherent quantum state transfer and spa-
tial adiabatic passage [5], waveguide optics [6], to name
a few.
The technique of STIRAP is based on the existence

of a dark state, which is an eigenstate of the Hamilto-
nian and is a time-dependent superposition of the ini-
tial and target states. Because STIRAP is an adiabatic
technique, it achieves high fidelity only in the limit of
adiabatic evolution, which requires large temporal pulse
areas. If the adiabatic condition is not perfectly real-
ized, the nonadiabatic coupling between the eigenstates
causes the efficiency of the process to drop down. Several
methods to achieve higher fidelity of STIRAP have been
proposed. One scenario is to use an additional field to
cancel the nonadiabatic coupling [7]. Another approach
is to minimize the nonadiabatic losses by applying Lewis-
Riesenfeld inverse engineering [8], which has been shown
in [9] to be potentially equivalent to Berry’s transition-
less quantum driving [10]. One may also use the Dykhne-
Davis-Pechukas formula which leads to the so called par-
allel adiabatic passage [11]. These techniques imply a
strict time dependence of the pulse shapes and detuning.
Finally, one can use composite pulses to improve dra-
matically the fidelity of adiabatic passage [12], by choos-
ing appropriately the relative phases of the pulses in the
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sequence. Other theoretical techniques proposed to en-
gineer the shortcuts, with a detailed discussion of the
experimental results and prospects, can be found in the
recent review [13].
In the recent years there has been a growing interest in

the use of non-Hermitian (NH) Hamiltonians [14], espe-
cially in the context of PT -symmetric systems [15, 16].
It was demonstrated, for instance, that a PT -symmetric
Hamiltonian can produce a faster than Hermitian evolu-
tion in a two-state quantum system, while keeping the
eigenenergy difference fixed [17]. NH extensions have
been done on the classical Landau-Zener model [18] and
some schemes for the realisation of PT -symmetry have
been proposed [19]. Recently, an approximation of the
adiabatic condition for NH systems was also derived [20].
In this paper, we propose a technique to increase the

speed of STIRAP by using a NH term in the Hamilto-
nian to cancel the nonadiabatic coupling; hence we call
this method a NH shortcut to STIRAP. The proposed
method is similar to the NH shortcut for two-level adia-
batic processes, studied in [21]. The paper is organized as
follows. First, we shortly review the theory of STIRAP in
the case of resonant excitation. Then we study how addi-
tional NH terms in the Hamiltonian affect the evolution
and we show how NH terms can be used to cancel the
nonadiabatic coupling. We then consider two concrete
examples and examine the limitations of our method. In-
terestingly, for a STIRAP using delayed Gaussian-shaped
pulses in the counter-intuitive scheme the imaginary en-
ergy terms of the Hamiltonian turn out to be time in-
dependent. Finally, a possible physical implementation
of NH shortcut of STIRAP in waveguide optics is briefly
discussed.

II. THEORY OF STIRAP IN AN HERMITIAN

SYSTEM

We start by briefly reviewing the theory of STIRAP
[1]. Let us consider a three-level quantum system in a
lambda configuration [Fig. 1(a)], coherently driven by
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FIG. 1. (a) STIRAP coupling scheme. The three states |1〉,
|2〉 and |3〉 form a lambda configuration. The pump field Ωp(t)
couples states |1〉 and |2〉 and the Stokes field couples states
|3〉 and |2〉. (b) Tunneling-coupled optical waveguides realiz-
ing NH STIRAP in the counter-intuitive scheme for Gaussian
pulses. Populations of atomic states |1〉, |2〉 and |3〉 in (a)
are mimicked by light power propagating in waveguides |L〉,
|C〉 and |R〉, respectively. Waveguide |L〉 is lossy with loss
rate γ, whereas waveguide |R〉 provides gain −γ. The pump
(Stokes) Rabi frequency Ωp(s)(t) corresponds to the tunneling
rate ΩL(R)(t) of outer waveguides with the center waveguide.

two external fields, the pump field Ωp(t), and the Stokes
field Ωs(t). The goal is to transfer all the population
from the initial state |1〉 to the final state |3〉, without
populating the intermediate state |2〉. The evolution of
the system is described by the Schrödinger equation

i~∂tc(t) = H(t)c(t), (1)

where the vector c(t) = [c1(t), c2(t), c3(t)]
T contains the

three probability amplitudes of states |1〉, |2〉 and |3〉.
The Hamiltonian in the rotating-wave approximation and
assuming exact resonance reads [1]

H(t) =
~

2





0 Ωp(t) 0
Ωp(t) 0 Ωs(t)
0 Ωs(t) 0



 , (2)

where the Rabi frequencies Ωp(t) and Ωs(t) of the pump
and Stokes pulses are assumed to be real. The mechanism
of the population transfer in STIRAP and the limitation
of adiabaticity can be easily understood if we introduce
the so-called adiabatic basis. This is the basis, formed
of the instantaneous eigenstates |Φ+(t)〉, |Φ0(t)〉, |Φ−(t)〉
of the time-varying Hamiltonian H(t). These adiabatic

states are connected to the original states |1〉, |2〉 and |3〉
by

|Φ+(t)〉 =
1√
2
(sin θ|1〉+ |2〉+ cos θ|3〉) , (3a)

|Φ0(t)〉 = cos θ|1〉 − sin θ|3〉, (3b)

|Φ−(t)〉 =
1√
2
(sin θ|1〉 − |2〉+ cos θ|3〉) , (3c)

where the time-dependent mixing angle θ(t) is defined as

tan θ(t) = Ωp(t)/Ωs(t). (4)

The probability amplitudes of the adiabatic states a(t) =
[a+(t), a0(t), a−(t)]

T are connected to the original ones
by using the transformation

c(t) = R(t)a(t), (5)

where the transformation matrix R is given by

R(t) =
1√
2





sin θ
√
2 cos θ sin θ

1 0 −1

cos θ −
√
2 sin θ cos θ



 . (6)

The Schrödinger equation in the adiabatic basis can be
written as

i~∂ta(t) = Ha(t)a(t), (7)

with Ha = R
−1

HR− i~R−1
Ṙ, or explicitly

Ha(t) =
~√
2







Ω√
2
iθ̇ 0

−iθ̇ 0 −iθ̇
0 iθ̇ − Ω√

2






, (8)

where Ω(t) =
√

Ω2
p(t) + Ω2

s(t). Now, if we assume an adi-

abatic (slow) evolution, then θ̇ ≃ 0 which means that if
the system is initially in one of the adiabatic states, then
it stays in it during the evolution. It is this type of adi-
abatic following, which is in the essence of STIRAP. Let
us now take a closer look at the adiabatic state |Φ0(t)〉.
We see that it contains only states |1〉 and |3〉 and has no
component on state |2〉 [see Eq. (3b)]. Furthermore, for
a counterintuitive order of the pump and Stokes pulses,

we have the relations Ωp/Ωs
t→−∞−→ 0 and Ωp/Ωs

t→∞−→ ∞.
Hence, as time evolves, the mixing angle θ rises from 0
to π/2 and we get

|Φ0(−∞)〉 = |1〉, |Φ0(∞)〉 = −|3〉. (9)

This means, that if the evolution is perfectly adiabatic,
and the system is initially prepared in state |1〉, at the
end of the process we will achieve a complete popula-
tion transfer to state |3〉, with negligible excitation of the
intermediate state |2〉. However, the evolution is never

perfectly adiabatic and some nonadiabatic coupling iθ̇ is
always present, which limits the efficiency of STIRAP.
In the next section we show how this problem can be
overcome by adding NH terms in the Hamiltonian.

III. NON-HERMITIAN SHORTCUT

We consider again the STIRAP Hamiltonian (2), but
this time we add two time-dependent NH terms ±iγ in
the diagonal [22],
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H
γ(t) =

~

2





−iγ(t) Ωp(t) 0
Ωp(t) 0 Ωs(t)
0 Ωs(t) iγ(t)



 . (10)

which correspond to time-varying complex energies of the
bare states |1〉 and |3〉. In the adiabatic basis (3), this
Hamiltonian has the form

H
γ
a(t) =

~









Ω
2 + iγ cos 2θ

4 −iγ sin 2θ

2
√
2

+ i θ̇√
2

iγ cos 2θ
4

−iγ sin 2θ

2
√
2

− i θ̇√
2

−iγ cos 2θ
2 −iγ sin 2θ

2
√
2

− i θ̇√
2

iγ cos 2θ
4 −iγ sin 2θ

2
√
2

+ i θ̇√
2

−Ω
2 + iγ cos 2θ

4









.

(11)

Our goal is to choose γ(t) in such a way that the terms
in the Hamiltonian (11), which cause the evolution of the
system to deviate from state |Φ0(t)〉, vanish. This can be
achieved by setting

γ(t) =
2θ̇(t)

sin 2θ(t)
, (12)

which nullifies the first and the third element from the
second column of Hγ

a . In this way the evolution of the
amplitudes of the adiabatic state obey the equations

a+(tf ) = 0, (13a)

a0(tf ) = exp

[

− 1
2

∫ tf

ti

γ(t) cos 2θ(t)dt

]

, (13b)

a−(tf ) = 0, (13c)

where we have assumed that initially the state of the
system coincides with the adiabatic state |Φ0〉, hence
a0(ti) = 1. It can be shown that if Ωp(t) and Ωs(t) are re-
flections of each other, Ωp(t) = Ωs(τ−t) [e.g., if Ωp(t) and
Ωs(t) are identical symmetric functions of time], where τ
is the pulse delay, then γ(t) is an even function of time
and cos 2θ(t) is an odd function of time. Hence, if we
assume symmetric time interval, tf = −ti, the integral
in (13b) is equal to zero. This means that despite the
fact that the Hamiltonian is NH, the norm of the state
vector at the end of the evolution will be equal to unity.
There is, however, an essential distinction between the
Hermitian and non-Hermitian method in the transient
population during the evolution. While in the Hermitian
case the norm of the state vector remains unity during
the entire evolution, in the NH STIRAP, as seen from
Eq. (13b), the norm of the state vector will change in
time.

IV. EXAMPLES

In order to better illustrate the method of the NH
shortcut of STIRAP, we consider two special cases, and
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FIG. 2. (Top) Transition probability P1→3 as a function of
time for Gaussian pulse shapes (14) with Ω0 = 1.3/T and τ =
T . The black dashed line illustrates the standard STIRAP
technique, the solid blue line shows the NH STIRAP, and
the vertical dotted lines mark the initial and final moments
of time ti and tf , used in the integration of the Schrödinger
equation. (Bottom) Shapes of the pump and Stokes pulses
and of the gain/loss function γ(t).

we calculate the NH (gain/loss) functions γ(t) for both
of them. As a first example, let us assume that the pump
and Stokes pulses have Gaussian shape,

Ωp(t) = Ω0e
−(t−τ/2)2/T 2

, (14a)

Ωs(t) = Ω0e
−(t+τ/2)2/T 2

, (14b)

where Ω0 is the peak Rabi frequency, T is the pulse dura-
tion and τ is the delay between the pulses. For this pulse
shape, it can be easily shown that the gain/loss function
of Eq. (12) is constant,

γ(t) = 2
τ

T 2
. (15)

This time independence of γ allows one a relatively easy
implementation of the NH Hamiltonian in waveguide op-
tics, where γ describes optical amplification/attenuation
in the outer waveguides of a three-waveguide structure
[6], as discussed in more detail in the next section.
In Fig. 2 we plot the evolution in time of the population

of the target state |3〉, for the regular STIRAP (γ = 0)
and for the NH extension (γ 6= 0). We can see from
the figure, that the NH STIRAP strongly outperforms
the original Hermitian STIRAP, by achieving complete
population transfer, while for the standard STIRAP we
have only P3 ≈ 0.05 for the same values of Ω0 and τ .
As a second example we assume hyperbolic secant
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FIG. 3. Same as Fig. 2 but for hyperbolic secant pulse shapes
(16) with Ω0 = 6/T and τ = 3T .

pulse shapes,

Ωp(t) = Ω0 sech

(

t− τ/2

T

)

, (16a)

Ωs(t) = Ω0 sech

(

t+ τ/2

T

)

. (16b)

In this case, the gamma term is given by

γ(t) =
1

T

[

tanh

(

t+ τ/2

T

)

− tanh

(

t− τ/2

T

)]

. (17)

In Fig. 3 we show the evolution of the population of the
target state, as well as the pulse shapes and γ. Again,
we find that by using the NH STIRAP, we obtain much
higher fidelity, even for parameter values where the ordi-
nary STIRAP fails.
We want to note here, that both in the cases of Gaus-

sian and sech pulse shapes, the function γ(t) does not de-
pend on the particular value of the peak Rabi frequency.
This is an interesting feature, which allows our technique
to be used even for small values of Ω0, where the usual
STIRAP technique would not work.

V. FEASIBLE IMPLEMENTATION IN OPTICS

As anticipated above, our suggested method of NH
shortcut to adiabaticity could be physically realized in
waveguide optics [6]. In this case, the system is com-
posed of three optical waveguides |L〉, |C〉 and |R〉 in the
geometrical setting schematically shown in Fig. 1(b). In
photonic STIRAP, the role of Rabi frequencies Ωp and
Ωs is played by the tunneling rates ΩL and ΩR between

the center waveguide |C〉 and the waveguides |L〉 and |R〉
respectively. Therefore, to implement the desired pulse
shape, the separation distance dL and dR between outer
and center waveguides is slowly varied along the propaga-
tion direction t. Since the tunneling rate scales exponen-
tially with the waveguide separation according to the law
ΩL,R(t) = (Ω0/2) exp{−k[dL,R(t) − d0]} (with Ω0 and k
two constant parameters to be determined from the fab-
rication process), in order to implement a Gaussian pulse
shape a quadratic law for dL and dR is required (see Ref. 6
for further details). In our NH generalization of optical
STIRAP, for a Gaussian pulse shape, a longitudinally-
independent optical loss−γ and an equal rate of net opti-
cal amplification γ should be applied to the outer waveg-
uides |L〉 and |R〉, respectively. A possible implemen-
tation of such an active/passive system can be achieved
in Ti in-diffused Fe:LiNbO3 optical waveguides, which
have been recently exploited to experimentally demon-
strate PT -symmetric directional couplers in the visible
[23]. Actually, the geometry of Fig. 1(b) can be easily
obtained in Ti in-diffused LiNbO3 waveguides by using
standard photolithography to shape the Ti stripes before
in-diffusion. Moreover, loss rate γ can be controlled by
the amount of Fe2+ dopants, giving rise to optical exci-
tation of electrons from Fe2+ centers to the conduction
band of LiNbO3. Finally, optical gain is provided under
laser pumping through two-wave mixing process thanks
to the photorefractive nonlinearity induced by Fe-doping:
a gain coefficient g of few cm−1 can be easily achieved
(g = 3.8 cm−1 in Ref. 23). Note that, as in Ref. 23, the
pump laser beam is incident from the top of the sam-
ple and a suitable amplitude mask ought to be employed
to selectively control the amount of pump illumination
in the three waveguides so to achieve: g = 0, i.e. no
pumping, to have net attenuation with rate −γ in |L〉;
g = γ, i.e. transparency, in |C〉; and g = 2γ, so to have
net optical amplification g − γ = γ, in |R〉. To provide
more evidence of feasibility of our scheme, we numeri-
cally studied beam propagation in a three-waveguide op-
tical structure in the geometrical setting schematically
shown in Fig. 1(b). In the scalar and paraxial approxi-
mations, the optical Schrödinger equation for the electric
field envelope ψ(x, t) that describes beam propagation in
the optical structure reads (see, for instance, [24])

iλ
∂ψ

∂t
= − λ2

2ns

∂2ψ

∂x2
+ V (x, t)ψ (18)

where λ = λ/(2π), λ is the wavelength of light wave
propagating in the dielectric medium, ns is the sub-
strate refractive index at wavelength λ, t and x are
the longitudinal and transverse spatial coordinates, re-
spectively, and V (x, t) is the optical potential, which
is related to the refractive index change ∆n(x, t) of
the guiding structure from the substrate region by the
simple relation V (x, t) = −∆n(x, t). An error func-
tion shape ∆nG(x) = ∆n0{erf[(x + w1)/Dx] − erf[(x −
w1)/Dx)]}/[2 erf(w1/Dx)] has been assumed for the re-
fractive index profile of each of the three waveguides in
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the structure [see the inset of Fig. 4(a)], with a channel
width 2w1 = 4 µm, a diffusion length Dx = 2 µm and a
maximum index change ∆n0 = 7× 10−3, which are typi-
cal to Ti in-diffused LiNbO3 optical waveguides. To sim-
ulate loss and gain in the outer waveguides |L〉 and |R〉, a
small imaginary part ∆nI of opposite signs, leading to a
complex refractive index, has been added to ∆n0 for the
waveguides |L〉 and |R〉. The optical structure is probed
at λ = 514 nm (Ar-ion laser light), corresponding to a
bulk refractive index ns = 2.33. The outer waveguides
|L〉 and |R〉 are parabolically-curved along the propaga-
tion direction t; the detailed behavior of the spacings
dL and dR of waveguides |L〉 and |R〉 from the straight
central waveguide |C〉 are depicted in Fig. 4(a). The min-
imum separation distance is d0 = 5.95 µm, whereas the
longitudinal shift is τ = 7 mm [see Fig. 1(a)]. The bent
profiles of waveguides |L〉 and |R〉 yield an effective Gaus-
sian variation with t of the coupling constants ΩL and ΩR

[see Eqs. (14)], corresponding to Ω0 ≃ 1.985 cm−1 and
T ≃ τ = 7 mm, i.e. Ω0T = 1.3 as in Fig. 2(a). The
full sample length is L = 10T = 70 mm. Figure 4(c)
shows, in a pseudo-color map, the numerically-computed
light intensity evolution along the sample for ∆nI = 0,
i.e. in the absence of gain and loss in the outer waveg-
uides. At the input plane, t = 0, the waveguide |L〉
is excited by a Gaussian beam which is well overlapped
with the fundamental mode of the waveguide. The cor-
responding behavior of the optical light power trapped
in waveguide |R〉, normalized to the input optical power
value in waveguide |L〉, is shown by the dashed curve of
Fig. 4(b), which reproduces very well the behavior pre-
dicted by coupled-mode equations (the dashed curve in
the upper panel of Fig. 2). To cancel the non-adiabatic
terms, according to Eq. (15) a power loss/gain coefficient
γ = 2τ/T 2 ≃ 2.8 cm−1 is required. Such a gain/loss
value, which can be realized by Fe-doping, is obtained by
assuming an imaginary part ∆nI ≃ ±0.0016∆n0 of the
refractive index change in waveguides |L〉 and |R〉. In
Fig. 4(d) we show the numerically-computed light inten-
sity evolution along the sample in the presence of loss and
gain in waveguides |L〉 and |R〉, respectively. The corre-
sponding behavior of the normalized optical light power
trapped in waveguide |R〉 is shown by the solid curve in
Fig. 4(b), which reproduces very well the curve predicted
by the coupled-mode equation model (the solid curve in
the upper panel of Fig.2).

VI. CONCLUSIONS AND DISCUSSION

In this paper we have studied theoretically a NH gen-
eralization of STIRAP, which allows one to cancel the
nonadiabatic coupling and increase the speed and fidelity
of the process. We have examined two special cases,
which allow to understand how the technique works for
a particular shape of the pump and Stokes pulses. Re-
markably, for a STIRAP using delayed Gaussian-shaped
pulses in the counter-intuitive scheme, the required imag-
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FIG. 4. Beam propagation in the three-waveguide optical
system of Fig. 1(b) that realizes the NH Hamiltonian (10). (a)
Behavior of the waveguide separation distances dL and dR of
waveguides |L〉 and |R〉 from the central waveguide |C〉. The
refractive index profile ∆nG(x) of the single waveguide chan-
nel used in the numerical simulations is depicted in the inset.
(b) Evolution of the optical beam power trapped in waveguide
|R〉, normalized the optical power that excites waveguide |L〉
at the input plane. The dashed curve refers to the Hermitian
model (i.e. absence of loss and gain in waveguides |L〉 and
|R〉), whereas the solid curve corresponds to the NH model
with a uniform loss/gain rate defined by Eq. (15). Panels (c)
and (d) show the evolution of beam intensity along the waveg-
uide system, as obtained by solving the optical Schrödinger
equation (18) using a beam propagation method, in the Her-
mitian [panel (c)] and non-Hermitian [panel (d)] case. Pa-
rameter values are given in the text.

inary terms of the Hamiltonian turn out to be time in-
dependent. This allowed us to propose a feasible im-
plementation of NH STIRAP in optical waveguides with
uniform gain/loss.
We want to note here, that our method cannot be ap-

plied for arbitrary pulse shapes, but has some restric-
tions. In order to find the domain of applicability of
our technique, we can express the gain/loss function γ
in terms of the pump and Stokes Rabi frequencies. Us-
ing Eq. (12), after some simple algebraic calculations, we
obtain

γ(t) =
Ω̇p(t)

Ωp(t)
− Ω̇s(t)

Ωs(t)
=

d

dt
ln

Ωp(t)

Ωs(t)
(19)

Hence, in order to be able to apply this method, the
logarithm of the ratio of the two pulse functions needs to
have well defined first derivative. For instance, if we try
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to use sin2 pulse shapes, one can easily check that the γ
term is divergent, which obviously limits the applicability
of our method.

Another point, which is important to stress is that the
technique of NH shortcut is very sensitive to the initial
conditions. The initial state of the system must be very
closely prepared to the adiabatic state |Φ0〉. Otherwise,
the norm of the state vector will not be conserved and
some extra gain or loss will be introduced.

Finally, we point out that the scheme, which we pro-
pose, only works for the case of resonant STIRAP. If the
one-photon detuning is not equal to zero, the nonadia-

batic couplings will depend on two mixing angles; hence
it is not straightforward to nullify the losses and further
investigation may be necessary. One possible direction
for further investigation, in order to overcome this issue,
might be to use the non-Hermitian generalization of the
Lewis-Resenfield theory [25] to find a shortcut for such
Hamiltonian.
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[13] E. Torrontegui, S. Ibáñez, S. Martinez-Garaot, M. Mod-
ugno, A. del Campo, D. Guery-Odelin, A. Ruschhaupt,
Xi Chen, and J. G. Muga, Adv. At. Mol. Opt. Phys. 62,
117 (2013).

[14] N. Moiseyev, Non-Hermitian Quantum Mechanics (Cam-
bridge University Press, London, Cambridge, 2011).

[15] C. M. Bender and S. Boettcher, Phys. Rev. Lett. 80, 5243
(1998); C. M. Bender, Rep. Prog. Phys. 70, 957 (2007).

[16] A. Mostafazadeh, J. Math.Phys. 43, 205 (2002); A.
Mostafazadeh, J. Phys. A 36, 7081 (2003).

[17] C. M. Bender, D. C. Brody, H. F. Jones, and B. K. Meis-
ter, Phys. Rev. Lett. 98, 040403 (2007); R. Uzdin, U.
Günther, S. Rahav, and N. Moiseyev, J. Phys. A: Math.
Theor. 45, 415304 (2012).

[18] E. M. Graefe, H. J. Korsch, Czech. J. Phys. 56, 1007
(2006); S. A. Reyes, F. A. Olivares and L. Morales-
Molina, J. Phys. A: Math. Theor. 45, 444027 (2012); R.
Uzdin and N. Moiseyev, J. Phys. A: Math. Theor. 45,
444033 (2012).

[19] C. Hang, G. Huang, and V. V. Konotop, Phys. Rev. Lett.
110, 083604 (2013); H. Li, J. Dou, and G. Huang, Opt.
Express 21, 32053 (2013).
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