265 research outputs found

    Design and validation of a system for controlling a robot for 3D ultrasound scanning of the lower limbs

    Get PDF
    Peripheral arterial disease (PAD) is a common circulatory problem featured by arterial narrowing or stenosis, usually in the lower limbs (i.e. legs). Without sufficient blood supply, in the case of PAD, the patient may suffer from intermittent claudication, or even require an amputation. Due to the PAD’s high prevalence yet low public awareness in the early stages, its diagnosis becomes very important. Among the most common medical imaging technologies in PAD diagnosis, the ultrasound probe has the advantages of lower cost and non-radiation. Traditional ultrasound scanning is conducted by sonographers and it causes musculoskeletal disorders in the operators. In addition, the data obtained from the manual operation are unable for the three-dimensional reconstruction of the artery needed for further study. Medical ultrasound robots release sonographers from routine lifting strain and provide accurate data for three-dimensional reconstruction. However, most existing medical ultrasound robots are designed for other purposes, and are unsuited to PAD diagnosis in the lower limbs. In this study, we present a novel medical ultrasound robot designed for PAD diagnosis in the lower limbs. The robot platform and the system setup are illustrated. Its forward and inverse kinematic models are solved by decomposing a complex parallel robot into several simple assemblies. Singularity issues and workspace are also discussed. Robots need to meet certain accuracy requirements to perform dedicated tasks. Our robot is calibrated by direct measurement with a laser tracker. The calibration method used is easy to implement without requiring knowledge of advanced calibration or heavy computation. The calibration result shows that, as an early prototype, the robot has noticeable errors in manufacturing and assembling. The implemented calibration method greatly improves the robot's accuracy. A force control design is essential when the robot needs to interact with an object/environment. Variable admittance controllers are implemented to adapt the variable stiffness encountered in human-robot interaction. An intuitive implementation of the passivity theory is proposed to ensure that the admittance model possesses a passivity property. Finally, experiments involving human interaction demonstrate the effectiveness of the proposed control design

    Application of conjugated materials in sports training

    Get PDF
    In recent years, with the rapid development of the sports industry, the quality of sports training products on the market is uneven. Problems such as inaccurate detection of athletes’ physical indicators, low comfort of sportswear, and reduced satisfaction with sports equipment often occur. To this end, this article proposes to apply conjugated materials with excellent optical, electrical, thermal and other properties to sports training and sports products, by summarizing the properties of conjugated materials and their applications in sports training, explores the potential of conjugated materials in improving athletes’ training effects, monitoring sports status, and improving sports equipment. This article rates the application of conjugated materials in sports training products in terms of comfort, waterproofness, portability, lightness, aesthetics and breathability. The results showed that the average scores of the 20 sports participants on sportswear were 9.0475, 9.0075, 9.01, 9.025, 9.0325 and 9.04 respectively; the average scores on sports shoes were 9.035, 9.055, 9.02, 9.085, 9.0175 and 8.9975 respectively. Research shows that applying conjugated materials to sports training can improve athletes’ performance and contribute to the better development of sports

    Modeling, Simulation and Implementation of a Bird-Inspired Morphing Wing Aircraft

    Full text link
    We present a design of a bird-inspired morphing wing aircraft, including bionic research, modeling, simulation and flight experiments. Inspired by birds and activated by a planar linkage, our proposed aircraft has three key states: gliding, descending and high-maneuverability. We build the aerodynamic model of the aircraft and analyze its mechanisms to find out a group of optimized parameters. Furthermore, we validate our design by Computational Fluid Dynamics (CFD) simulation based on Lattice-Boltzmann technology and determine three phases of the planar linkage for the three states. Lastly, we manufacture a prototype and conduct flight experiments to test the performance of the aircraft.Comment: 2019 3rd International Conference on Robotics and Automation Sciences (ICRAS

    Pore and fracture scale characterization of oil shale at different microwave temperatures

    Get PDF
    The spatial complexity of oil shale systems is manifested by microstructure, pore space randomness and extensive heterogeneity. A microwave pyrolysis device developed for this study was used to pyrolyze oil shale, and the microstructure before and after pyrolysis was visually examined and quantified. The internal structure of the rock and the extent of pore and fracture expansion are more accurately determined in this way. The microstructure of oil shale at different temperatures before and after microwave pyrolysis is identified by X-ray microcomputed tomography (ĂŽÂĽCT) with automatic ultra-high-resolution scanning electron microscopy (SEM), to observe the heterogeneous state of oil shale on 2D and 3D scales and define the distribution of internal pores and fractures by post-processing ĂŽÂĽCT visualization. The study found that fractures sized from microns to millimeters along with pore fractures were observed at increasing microwave temperatures. The fractures gradually expanded with increasing temperature in the direction of horizontal or vertical laminae and generated a more connected pore network. The kerogen gradually decreased with a rise in temperature. The porosity increased from 0.26% to 13.69% at the initial temperature. This research is essential for the qualitative as well as quantitative analysis of the internal structure of oil shales under microwave radiation

    Direct conversion of astrocytes into neuronal cells by drug cocktail

    Get PDF
    Direct conversion of astrocytes into neuronal cells by drug cocktail Cell Research advance online publication 2 October 2015; doi:10.1038/cr.2015.120 Dear Editor, Neurological disorder is one of the greatest threats to public health according to the World Health Organization. Because neurons have little or no regenerative capacity, conventional therapies for neurological disorders yielded poor outcomes. While the introduction of exogenous neural stem cells or neurons holds promise, many challenges still need to be tackled, including cell resource, delivery strategy, cell integration and cell maturation. Reprogramming of fibroblasts into induced pluripotent stem cells or directly into desirable neuronal cells by transcription factors (TFs) or small molecules can solve some problems, but other issues remain to be addressed, including safety, conversion efficiency and epigenetic memory [1, 2]. Astrocytes are considered to be the ideal starting candidate cell type for generating new neurons, due to their proximity in lineage distance to neurons and ability to proliferate after brain damage. Many studies have already revealed that astrocytes of the central nervous system can be reprogrammed into induced neuronal cells by virus-mediated overexpression of specific TFs in vitro and in vivo [3-6]. However, application of this virus-mediated direct conversion is still limited due to concerns on clinical safety. We have previously reported direct conversion of somatic cells into neural progenitor cells (NPCs) in vitro by cocktail of small molecules under hypoxia [7]. Here we set out to explore whether astrocytes can be induced into neuronal cells by the chemical cocktail in vitro

    Low-Complexity Receiver for HACO-OFDM in Optical Wireless Communications

    Get PDF
    In this letter, a low-complexity receiver (Rx) is proposed for hybrid asymmetrically clipped optical orthogonal frequency division multiplexing (HACO-OFDM). Owing to the special time-domain property of HACO-OFDM, overlaid asymmetrically clipped OFDM (ACO-OFDM) and pulse-amplitude-modulated discrete multitoned (PAM-DMT) signals can be distinguished in the time domain to reduce its computational complexity. Besides, the near-optimal optical power allocation is further applied to optimize the proposed system performance. Theoretical analysis and simulation results demonstrate that, the proposed Rx can achieve nearly the same bit error rate (BER) performance as the BER-optimal iterative Rx but with an effective complexity reduction, thus demonstrating its application potential in high-speed optical communication systems
    • …
    corecore