25 research outputs found

    Energy transformation on flow-induced motions of multiple cylindrical structures with various corner shapes

    Get PDF
    A comprehensive numerical study on flow-induced motions (FIMs) of a deep-draft semi-submersible, a typical multiple cylindrical structure in offshore engineering, was carried out to investigate the energy transformation of the vortex shedding process. In addition, the corner shape effect on the flow characteristics, the hydrodynamic forces, and the FIM responses are presented for a multiple cylindrical structure with various corner shapes (sharp, rounded, and chamfered) under 45○ current incidence. Different energy transformations, hydrodynamic characteristics, and FIM responses were observed due to the slight variation of the corner shape. The galloping at 45○ incidence for a square section shape column was observed when the corner shape modified as a chamfered corner. A “re-attached vortex shedding” phenomenon is discovered when the “lock-in” happened for a chamfered corner design. Further insights of the fluid physics into the flow characteristics due to the difference of the corner shape are revealed. In addition, the energy transformation and the mechanism for reducing the hydrodynamic forces and the FIM responses are analyzed

    LH-moment estimation for statistical analysis on the wave crest distributions of a deepwater spar platform model test

    Get PDF
    The design of fixed and compliant offshore platforms requires the reliable estimation of extreme values with small probabilities of exceedance based on an appropriate probability distribution. The Weibull distribution is commonly utilised for the statistical analysis of wave crests, including near-field wave run-ups. The parameters are estimated empirically from experimental or onsite measurements. In this paper, the data set of wave crests from a Spar model test was statistically analysed by using the method of LH-moments for parameter estimation of the Weibull distribution. The root-mean-square errors (RMSEs) and the error of LH-kurtosis were used to examine the goodness-of-fit. The results for the first four LH-moments, the estimated parameters, and the probability distributions showed that the level of the LH-moments has a significant influence. At higher levels, the estimation results gave a more focused representation of the upper part of the wave crest distributions, which indicates consistency with the intention of the method of LH-moments. The low tail RMSE values of less than 2.5% demonstrated that a Weibull distribution model estimated by using high-level LH-moments can accurately represent the probability distribution of large extreme wave crests for incident waves, wave run-ups, and moon pool waves. Goodness-of-fit test on the basis of comparison of sampling LH-kurtosis and theoretical LH-kurtosis was recommended as a procedure for selecting an optimum level

    Performance characteristics of a conceptual ring-shaped spar-type VLFS with double-layered perforated-wall breakwater

    Get PDF
    A ring-shaped spar-type Very Large Floating Structure (VLFS) is proposed as an intermediate base for supporting deepwater resource exploitation far away from the coast line. The proposed VLFS is composed of eight rigidly connected deep-draft spar-type modules and an inside harbor. A double-layered perforated-wall breakwater is vertically attached to the VLFS and pierces through the water surface to attenuate the wave energy in the inside harbor. The hydrodynamic performance characteristics of the ring-shaped VLFS was experimentally evaluated in the present study, focusing on the motion responses, wave elevations, and wave run-ups. The natural periods of the motions in vertical plane were determined to be larger than 40s, which is much larger than common wave periods. This enhanced the motion performance in vertical plane and afforded favorable habitation and operation condition on the VLFS. A large surge damping was induced by the vertical breakwater, which tended to significantly affect the surge and pitch motions, but had a negligible effect on the heave motion. The component frequencies of the wave elevations in the inside harbor and the wave run-ups were identical with those of the incident waves. The wave attenuation was frequency-dependent and effective for the common wave frequencies, with a smaller loss coefficient observed in higher sea state. The wave attenuation and wave run-ups tended to improve in the absence of the leeward walls

    Flow around an oscillating circular disk at low to moderate Reynolds numbers

    Get PDF
    Direct numerical simulations of the flow induced by a circular disk oscillating sinusoidally along its axis are performed. The aspect ratio of the disk is 10. The Reynolds number , based on the maximum speed and the diameter of the disk, is in the range of . The Keulegan-Carpenter number is in the range of . Five flow regimes are observed in the considered-space: (I) axisymmetric flow (AS), (II) planar symmetric flow in the low-region (PSL), (III) azimuthally rotating flow in the low-region (ARL), (IV) planar symmetric flow in the high-region (PSH) and (V) azimuthally rotating flow in the high-region (ARH). The critical boundaries between different flow regimes are identified based on the evolutions of the magnitude and direction of transverse force acting on the disk. For the non-axisymmetric flow regimes, the flow is one-sided with respect to the axis of the disk and is associated with a non-zero mean value of the transverse force acting on the disk

    Probability analysis of wave run-ups and air gap response of a deepwater semisubmersible platform using LH-moments estimation method

    Get PDF
    The air gap response in harsh environments, a critical design issue for offshore platforms, is related to the wave run-ups attributable to wave-platform interactions and has the potential to result in serious wave impacts. Therefore, the reliable prediction of wave run-ups and air gap response in harsh environments is a challenging task and needs further study. In this study, probability analysis of the wave run-up data from an experimental study of a deepwater semisubmersible platform was conducted based on the three-parameter Weibull distribution model using the LH-moments method for parameter estimation. One of the highlights in the present study is that the explicit relationships between the first three LH-moments at arbitrary levels and the parameters of the Weibull distribution were established analytically. The accuracy of LH-kurtosis estimation was proposed to determine the appropriate level for probability analysis. The air gap response was found to be more serious in quartering and beam seas than in head seas. In front of the columns along the incoming-wave direction, especially the aft one, the wave run-ups showed higher probability distributions than did the other platform areas, leading to higher likeliness of suffering from negative air gap and wave impact accidents. At the platform center, the wave run-up was found to be significantly lower than the incident wave. This research shows that the probability distributions based on LH-moments at the appropriate level can well represent large wave run-ups, except for that beyond the still-water air gap, where both measurement methods and probability analyses warrant further research

    Experimental and numerical study on vortex-induced motions of a deep-draft semi-submersible

    Get PDF
    An experimental study on vortex-induced motions (VIM) of a deep-draft semi-submersible (DDS) was carried out in a towing tank, with the aim to investigate the VIM effects on the overall hydrodynamics of the structure. In order to study the fluid physics associated with VIM of the DDS, a comprehensive numerical simulation was conducted to examine the characteristics of vortex shedding processes and their interactions due to multiple cylindrical columns. The experimental measurements were obtained for horizontal plane motions including transverse, in-line and yaw motions as well as drag and lift forces on the structure. Spectral analysis was further carried out based on the recorded force time history. These data were subsequently used to validate the numerical model. Detailed numerical results on the vortex flow characteristics revealed that during the “lock-in”, the vortex shedding processes of the upstream columns enhance the vortex shedding processes of the downstream columns leading to the rapid increase of the magnitude of VIM. In addition to the experimental measurements, for the two uniform flow incidences (0° and 45°) investigated, comprehensive numerical data of the parametric study on the VIM characteristics at a wide range of current strength will also serve as quality benchmarks for future study and provide guidance for practical design

    Experimental and numerical studies of the pontoon effect on vortex-induced motions of deep-draft semi-submersibles

    Get PDF
    The vortex-induced motion (VIM) is a critical issue in mooring and riser system design for column-type deepwater platforms. As regards to deep-draft semi-submersibles (DDS), even though VIM is mainly excited by vortex shedding around columns, the large-volume pontoons beneath the columns are also responsible for the wake interference, implying a non-negligible influence on VIM behavior. An experimental study and three-dimensional numerical simulations were performed to analyze the pontoon effect on the VIM of two semi-submersibles and a four-column structure without pontoons. The numerical results using Detached Eddy Simulation (DES) are in good agreement with the experimental measurements obtained from the towing model tests. The present investigations indicate that the resonant phenomenon is observed for all configurations. However, the four-column structure without pontoons shows the most significant transverse responses and yaw motions at both 0°- and 45°-incidences owing to the largest fluctuating lift forces induced by the well-established wake. Additionally, the negative values of work done by the pontoons at all reduced velocities confirm their damping effect on the VIM response

    Experimental study on the hydrodynamic behaviour of an FPSO in a deepwater region of the Gulf of Mexico

    Get PDF
    As offshore oil and gas exploration moves progressively toward greater water depths, it becomes more challenging to predict the environmental forces and global responses of floating production storage and offloading (FPSO) systems and the dynamic behaviour of the mooring lines and risers. The validation of complex numerical models through scale model experimental testing is restricted by the physical limits of the test facilities. It is not feasible to install the equivalent full length mooring lines and riser systems and select an appropriate scale model for reducing the uncertainties in the experimental test programme for deepwater and ultra-deepwater conditions. The combination of an appropriate scale FPSO model with a suitable level of equivalent effect reduced depth using a hybrid passive truncated experimental methodology for the mooring lines and risers is a practical approach. Following recent discoveries, FPSO has been proposed for a portion of the planned development in the southern Gulf of Mexico (GOM) in water depth ranging from 1000 to 2000 m. Based on a scale model and a hybrid passive truncated experimental method for mooring lines and risers, this paper investigates the global response of an FPSO, as well as the dynamics of mooring lines and risers in the context of prevailing environmental conditions for field development in a specific deepwater location in GOM. The experiments revealed that the main horizontal motion response of the FPSO (surge) under non-collinear loading condition is almost two-times that of the collinear loading condition. The mooring lines in the non-collinear condition are more sensitive to the dynamic response and risers appear to have an important influence on the low frequency damping

    Evaluating biochar and its modifications for the removal of ammonium, nitrate, and phosphate in water

    Get PDF
    Removal of nitrogen (N) and phosphorus (P) from water through the use of various sorbents is often considered an economically viable way for supplementing conventional methods. Biochar has been widely studied for its potential adsorption capabilities for soluble N and P, but the performance of different types of biochars can vary widely. In this review, we summarized the adsorption capacities of biochars in removing N (NH4-N and NO3-N) and P (PO4-P) based on the reported data, and discussed the possible mechanisms and influencing factors. In general, the NH4-N adsorption capacity of unmodified biochars is relatively low, at levels of less than 20 mg/g. This adsorption is mainly via ion exchange and/or interactions with oxygen-containing functional groups on biochar surfaces. The affinity is even lower for NO3-N, because of electrostatic repulsion by negatively charged biochar surfaces. Precipitation of PO4-P by metals/metal oxides in biochar is the primary mechanism for PO4-P removal. Biochars modified by metals have a significantly higher capacity to remove NH4-N, NO3-N, and PO4-P than unmodified biochar, due to the change in surface charge and the increase in metal oxides on the biochar surface. Ambient conditions in the aqueous phase, including temperature, pH, and co-existing ions, can significantly alter the adsorption of N and P by biochars, indicating the importance of optimal processing parameters for N and P removal. However, the release of endogenous N and P from biochar to water can impede its performance, and the presence of competing ions in water poses practical challenges for the use of biochar for nutrient removal. This review demonstrates that progress is needed to improve the performance of biochars and overcome challenges before the widespread field application of biochar for N and P removal is realized
    corecore