4,764 research outputs found

    Wave-packet treatment of neutrino oscillations and its implications on determining the neutrino mass hierarchy

    Get PDF
    We derive the neutrino flavor transition probabilities with the neutrino treated as a wave packet. The decoherence and dispersion effects from the wave-packet treatment show up as damping and phase-shifting of the plane-wave neutrino oscillation patterns. If the energy uncertainty in the initial neutrino wave packet is larger than around 0.01 of the neutrino energy, the decoherence and dispersion effects would degrade the sensitivity of reactor neutrino experiments to mass hierarchy measurement to lower than 3 σ\sigma confidence level

    A General SU(2) Formulation for Quantum Searching with Certainty

    Get PDF
    A general quantum search algorithm with arbitrary unitary transformations and an arbitrary initial state is considered in this work. To serach a marked state with certainty, we have derived, using an SU(2) representation: (1) the matching condition relating the phase rotations in the algorithm, (2) a concise formula for evaluating the required number of iterations for the search, and (3) the final state after the search, with a phase angle in its amplitude of unity modulus. Moreover, the optimal choices and modifications of the phase angles in the Grover kernel is also studied.Comment: 8 pages, 2 figure

    Tensor coupling effects on spin symmetry in anti-Lambda spectrum of hypernuclei

    Full text link
    The effects of ΛˉΛˉω\bar\Lambda\bar\Lambda\omega-tensor coupling on the spin symmetry of Λˉ\bar{\Lambda} spectra in Λˉ\bar{\Lambda}-nucleus systems have been studied with the relativistic mean-field theory. Taking 12^{12}C+Λˉ\bar{\Lambda} as an example, it is found that the tensor coupling enlarges the spin-orbit splittings of Λˉ\bar\Lambda by an order of magnitude although its effects on the wave functions of Λˉ\bar{\Lambda} are negligible. Similar conclusions has been observed in Λˉ\bar{\Lambda}-nucleus of different mass regions, including 16^{16}O+Λˉ\bar{\Lambda}, 40^{40}Ca+Λˉ\bar{\Lambda} and 208^{208}Pb+Λˉ\bar{\Lambda}. It indicates that the spin symmetry in anti-lambda-nucleus systems is still good irrespective of the tensor coupling.Comment: 12 pages, 3 figures

    A General Phase Matching Condition for Quantum Searching Algorithm

    Full text link
    A general consideration on the phase rotations in quantum searching algorithm is taken in this work. As four phase rotations on the initial state, the marked states, and the states orthogonal to them are taken account, we deduce a phase matching condition for a successful search. The optimal options for these phase are obtained consequently.Comment: 3 pages, 3 figure

    Federated Learning in Intelligent Transportation Systems: Recent Applications and Open Problems

    Full text link
    Intelligent transportation systems (ITSs) have been fueled by the rapid development of communication technologies, sensor technologies, and the Internet of Things (IoT). Nonetheless, due to the dynamic characteristics of the vehicle networks, it is rather challenging to make timely and accurate decisions of vehicle behaviors. Moreover, in the presence of mobile wireless communications, the privacy and security of vehicle information are at constant risk. In this context, a new paradigm is urgently needed for various applications in dynamic vehicle environments. As a distributed machine learning technology, federated learning (FL) has received extensive attention due to its outstanding privacy protection properties and easy scalability. We conduct a comprehensive survey of the latest developments in FL for ITS. Specifically, we initially research the prevalent challenges in ITS and elucidate the motivations for applying FL from various perspectives. Subsequently, we review existing deployments of FL in ITS across various scenarios, and discuss specific potential issues in object recognition, traffic management, and service providing scenarios. Furthermore, we conduct a further analysis of the new challenges introduced by FL deployment and the inherent limitations that FL alone cannot fully address, including uneven data distribution, limited storage and computing power, and potential privacy and security concerns. We then examine the existing collaborative technologies that can help mitigate these challenges. Lastly, we discuss the open challenges that remain to be addressed in applying FL in ITS and propose several future research directions

    Photometric Variability in the CSTAR Field: Results From the 2008 Data Set

    Get PDF
    The Chinese Small Telescope ARray (CSTAR) is the first telescope facility built at Dome A, Antarctica. During the 2008 observing season, the installation provided long-baseline and high-cadence photometric observations in the i-band for 18,145 targets within 20 deg2 CSTAR field around the South Celestial Pole for the purpose of monitoring the astronomical observing quality of Dome A and detecting various types of photometric variability. Using sensitive and robust detection methods, we discover 274 potential variables from this data set, 83 of which are new discoveries. We characterize most of them, providing the periods, amplitudes and classes of variability. The catalog of all these variables is presented along with the discussion of their statistical properties.Comment: 38 pages, 11 figures, 4 tables; Accepted for publication in ApJ

    Emerging and reemerging helminthiases and the public health of China.

    Get PDF
    Despite great strides in their control throughout the People's Republic of China, helminth infections remain an important public health problem. The Institute of Parasitic Diseases of the Chinese Academy of Preventive Medicine, under the guidance of the Chinese Ministry of Health, completed a nationwide survey of more than 1 million people that showed the high prevalence and intensity of intestinal nematode infections; prevalence can sometimes exceed 50% in the Yangtze River valley provinces. Schistosoma japonicum is also a major cause of illness in this region. Attempts to control Chinese helminthic diseases with conventional anthelminthic drugs have been partially thwarted by high posttreatment rates of reinfection. Recently, several new human trematode pathogens have been identified. Novel approaches to chemoprophylaxis and vaccination may alleviate the public health problem caused by Chinese helminths. However, recombinant helminth vaccine development will depend on first cataloguing the extensive genetic diversity of Chinese helminths and candidate vaccine antigens. Evidence from biogeography, genetics, and systematics suggests that the genetic diversification of Chinese helminths and their vectors is an ongoing evolutionary process that began 12 million years ago near the convergence of major Asian river systems. Construction of the Three Gorges Super Dam on the Yangtze River may promote the emergence and reemergence of new helminths and their snail vector

    Eclipsing Binaries From the CSTAR Project at Dome A, Antarctica

    Get PDF
    The Chinese Small Telescope ARray (CSTAR) has observed an area around the Celestial South Pole at Dome A since 2008. About 20,00020,000 light curves in the i band were obtained lasting from March to July, 2008. The photometric precision achieves about 4 mmag at i = 7.5 and 20 mmag at i = 12 within a 30 s exposure time. These light curves are analyzed using Lomb--Scargle, Phase Dispersion Minimization, and Box Least Squares methods to search for periodic signals. False positives may appear as a variable signature caused by contaminating stars and the observation mode of CSTAR. Therefore the period and position of each variable candidate are checked to eliminate false positives. Eclipsing binaries are removed by visual inspection, frequency spectrum analysis and locally linear embedding technique. We identify 53 eclipsing binaries in the field of view of CSTAR, containing 24 detached binaries, 8 semi-detached binaries, 18 contact binaries, and 3 ellipsoidal variables. To derive the parameters of these binaries, we use the Eclipsing Binaries via Artificial Intelligence (EBAI) method. The primary and the secondary eclipse timing variations (ETVs) for semi-detached and contact systems are analyzed. Correlated primary and secondary ETVs confirmed by false alarm tests may indicate an unseen perturbing companion. Through ETV analysis, we identify two triple systems (CSTAR J084612.64-883342.9 and CSTAR J220502.55-895206.7). The orbital parameters of the third body in CSTAR J220502.55-895206.7 are derived using a simple dynamical model.Comment: 41 pages, 12 figures; published online in ApJ

    Optical coupling analysis and vibration characterization for packaging of 2 × 2 MEMS vertical torsion mirror switches

    Get PDF
    ABSTRACT We report optical coupling loss and vibration characterization for packaging of 2x2 vertical torsion mirror switches. The coupling losses of fiber-to-fiber and fiber-lens-lens-fiber are examined in order to design 2x2 MEMS optical switches required for the performance specification. The results indicate that the fiber-lens-lens-fiber configuration provides a over 1 mm working distance of 2.5 dB loss between the lens centers. The fiber-to-fiber only allows 175 xm for the same loss. In addition, the mechanical frequency response of the vertical torsion mirror is experimentally examined by electrostatic excitation. The discrepancy between the calculated and the measured nature frequencies is investigated by the study of the effect of the in-house post processes

    Magnetic-coupled electronic landscape in bilayer-distorted titanium-based kagome metals

    Full text link
    Quantum materials whose atoms are arranged on a lattice of corner-sharing triangles, i.e.\textit{i.e.}, the kagome lattice, have recently emerged as a captivating platform for investigating exotic correlated and topological electronic phenomena. Here, we combine ultra-low temperature angle-resolved photoemission spectroscopy (ARPES) with scanning tunneling microscopy and density functional theory calculations to reveal the fascinating electronic structure of the bilayer-distorted kagome material Ln\textit{Ln}Ti3{_3}Bi4{_4}, where Ln\textit{Ln} stands for Nd and Yb. Distinct from other kagome materials, Ln\textit{Ln}Ti3{_3}Bi4{_4} exhibits two-fold, rather than six-fold, symmetries, stemming from the distorted kagome lattice, which leads to a unique electronic structure. Combining experiment and theory we map out the electronic structure and discover double flat bands as well as multiple van Hove singularities (VHSs), with one VHS exhibiting higher-order characteristics near the Fermi level. Notably, in the magnetic version NdTi3{_3}Bi4{_4}, the ultra-low base temperature ARPES measurements unveil an unconventional band splitting in the band dispersions which is induced by the ferromagnetic ordering. These findings reveal the potential of bilayer-distorted kagome metals Ln\textit{Ln}Ti3{_3}Bi4{_4} as a promising platform for exploring novel emergent phases of matter at the intersection of strong correlation and magnetism
    • …
    corecore