27,526 research outputs found

    Semileptonic BB Meson Decays Into A Highly Excited Charmed Meson Doublet

    Full text link
    We study the heavy quark effective theory prediction for semileptonic BB decays into an orbital excited FF-wave charmed doublet, the (2+2^{+}, 3+3^{+}) states (D2D^{*'}_{2}, D3D_{3}), at the leading order of heavy quark expansion. The corresponding universal form factor is estimated by using the QCD sum rule method. The decay rates we predict are ΓBD2ν=1.85×1019GeV\Gamma_{B\to D^{*'}_{2}\ell\overline{\nu}}=1.85\times10^{-19} {GeV} and ΓBD3ν=1.78×1019GeV\Gamma_{B\to D_{3}\ell\overline{\nu}}=1.78\times10^{-19} {GeV}. The branching ratios are B(BD2ν)=4.6×107\mathcal {B}(B\to D_{2}^{*'}\ell\overline{\nu})=4.6\times10^{-7} and B(BD3ν)=4.4×107\mathcal {B}(B\to D_{3}\ell\overline{\nu})=4.4\times10^{-7}, respectively.Comment: 6 pages,2 figure

    Solving the Dirac equation with nonlocal potential by Imaginary Time Step method

    Full text link
    The Imaginary Time Step (ITS) method is applied to solve the Dirac equation with the nonlocal potential in coordinate space by the ITS evolution for the corresponding Schr\"odinger-like equation for the upper component. It is demonstrated that the ITS evolution can be equivalently performed for the Schr\"odinger-like equation with or without localization. The latter algorithm is recommended in the application for the reason of simplicity and efficiency. The feasibility and reliability of this algorithm are also illustrated by taking the nucleus 16^{16}O as an example, where the same results as the shooting method for the Dirac equation with localized effective potentials are obtained

    A quantitative evaluation of metallic conduction in conjugated polymers

    Get PDF
    As the periodicity in crystalline materials creates the optimal condition for electronic delocalization, one might expect that in partially crystalline conjugated polymers delocalization is impeded by intergrain transport. However, for the best conducting polymers this presumption fails. Delocalization is obstructed by interchain rather than intergrain charge transfer and we propose a model of weakly coupled disordered chains to describe the physics near the metal-insulator transition. Our quantitative calculations match the outcome of recent broad-band optical experiments and provide a consistent explanation of metallic conduction in polymers.Comment: 4 pages incl. 3 figure

    Effect of ludwigite (B2O3) on high Al2O3 slag and its mechanism used as a new blast furnace welding flux

    Get PDF
    Based on the measurement of viscosities and critical temperatures of CaO-MgO-SiO2- Al2O3-B2O3 slag system with various B2O3 contents, the slag with higher than 15 mas. % Al2O3 content has the lowest critical temperature and the widest solid-liquid coexisting region at about 2,0 mas. % B2O3. Furthermore, the X-ray diffractometer (XRD) result verified that bechilites whose melting point are low forms. Raman spectra revealed that the effect of network forming on viscosity is smaller than the effect of bechilites, which leads to the slag viscosity decrease with B2O3 addition. Base on the above research, so ludwigite can meet the requirements of a BF welding flux to decrease the critical temperature and improve the fluidity of the high Al2O3 slag

    Integration of gradient least mean squares in bidirectional long short-term (LSTM) memory networks for metallurgical bearing ball fault diagnosis

    Get PDF
    This paper introduces a novel diagnostic approach for bearing ball failures: a synergistic implementation of a bidirectional Long Short-Term Memory (LSTM) network, empowered by Gradient Minimum Mean Square. This method leverages deep analysis of operational data from bearings, enabling the precise identification of incipient bearing ball failures at early stages, thus markedly improving prediction accuracy. Our empirical results underscore the superior performance of this composite methodology in accurately detecting a spectrum of five mechanical bearing ball failure types, achieving a substantial enhancement in diagnostic precision
    corecore