33,537 research outputs found
Development program to produce mullite fiber insulation
Processing methods were utilized to form a mullite fiber-Kaowool felt. The formation of a blended felt using the Rotoformer wet-laying method was successful. Felt products were evaluated for tensile strength, thermal stability, thermal conductivity and structural integrity at 1259 C and 1371 C. Textile processing methods failed in an attempt to form a yarn from staple and multifilament mullite fiber due to fiber damage through mechanical handling. The refractoriness of pure Kaowool ceramic fiber is improved with additions of 30% or greater mullite fiber
Development of fine diameter mullite fiber
Results are presented of a program to develop and evaluate mullite fiber with a mean diameter under two microns. The two micron fiber is produced by a blowing process at room temperature from a low viscosity (10-25 poise) solution. The blown fiber was evaluated for dimensional stability in thermal cycling to 1371 C, and was equivalent to the 5 micron spun B and W mullite fiber. An additive study was conducted to evaluate substitutes for the boron. Three levels of chromium, lithium fluoride, and magnesium were added to the standard composition in place of boron and the fiber produced was evaluated for chemical and dimensional stability in thermal cycling to 1371 C. The magnesium was the most chemically stable, but the chrome additive imparted the best dimensional stability
A New Linear Inductive Voltage Adder Driver for the Saturn Accelerator
Saturn is a dual-purpose accelerator. It can be operated as a large-area
flash x-ray source for simulation testing or as a Z-pinch driver especially for
K-line x-ray production. In the first mode, the accelerator is fitted with
three concentric-ring 2-MV electron diodes, while in the Z-pinch mode the
current of all the modules is combined via a post-hole convolute arrangement
and driven through a cylindrical array of very fine wires. We present here a
point design for a new Saturn class driver based on a number of linear
inductive voltage adders connected in parallel. A technology recently
implemented at the Institute of High Current Electronics in Tomsk (Russia) is
being utilized[1].
In the present design we eliminate Marx generators and pulse-forming
networks. Each inductive voltage adder cavity is directly fed by a number of
fast 100-kV small-size capacitors arranged in a circular array around each
accelerating gap. The number of capacitors connected in parallel to each cavity
defines the total maximum current. By selecting low inductance switches,
voltage pulses as short as 30-50-ns FWHM can be directly achieved.Comment: 3 pages, 4 figures. This paper is submitted for the 20th Linear
Accelerator Conference LINAC2000, Monterey, C
Single and Many Particle Correlation Functions and Uniform Phase Bases for Strongly Correlated Systems
The need for suitable many or infinite fermion correlation functions to
describe some low dimensional strongly correlated systems is discussed. This is
linked to the need for a correlated basis, in which the ground state may be
postive definite, and in which single particle correlations may suffice. A
particular trial basis is proposed, and applied to a certain quasi-1D model.
The model is a strip of the 2D square lattice wrapped around a cylinder, and is
related to the ladder geometries, but with periodic instead of open boundary
conditions along the edges. Analysis involves a novel mean-field approach and
exact diagonalisation. The model has a paramagnetic region and a Nagaoka
ferromagnetic region. The proposed basis is well suited to the model, and
single particle correlations in it have power law decay for the paramagnet,
where the charge motion is qualitatively hard core bosonic. The mean field also
leads to a BCS-type model with single particle long range order.Comment: 23 pages, in plain tex, 12 Postscript figures included. Accepted for
publication in J.Physics : Condensed Matte
Evolution of Nuclear Shell Structure due to the Pion Exchange Potential
The evolution of nuclear shell structure is investigated for the first time
within density-dependent relativistic Hartree-Fock theory and the role of
-exchange potential is studied in detail. The energy differences between
the neutron orbits \Lrb{\nu1h_{9/2},\nu 1i_{13/2}} in the N=82 isotones and
between the proton ones \Lrb{\pi1g_{7/2},\pi1h_{11/2}} in the Z=50 isotopes
are extracted as a function of neutron excess . A kink around for
the N=82 isotones is found as an effect resulting from pion correlations. It is
shown that the inclusion of -coupling plays a central role to provide
realistic isospin dependence of the energy differences. In particular, the
tensor part of the -coupling has an important effect on the characteristic
isospin dependence observed in recent experiments.Comment: 4 pages and 4 figure
Relativistic Effects in Nuclear Matter and Nuclei
The status of relativistic nuclear many-body calculations of nuclear systems
to be built up in terms of protons and neutrons is reviewed. In detail,
relativistic effects on several aspects of nuclear matter such as the effective
mass, saturation mechanism, and the symmetry energy are considered. This review
will especially focus on isospin asymmetric issues, since these aspects are of
high interest in astrophysical and nuclear structure studies. Furthermore, from
the experimental side these aspects are experiencing an additional boost from a
new generation of radioactive beam facilities, e.g. the future GSI facility
FAIR in Germany or SPIRAL2 at GANIL/France. Finally, the prospects of studying
finite nuclei in microscopic calculations which are based on realistic
interactions by including relativistic effects in calculations of low momentum
interactions are discussed.Comment: 57 pages, 16 figure
Exact Quantum Search by Parallel Unitary Discrimination Schemes
We study the unsorted database search problem with items from the
viewpoint of unitary discrimination. Instead of considering the famous
Grover's the bounded-error algorithm for the original problem, we
seek for the results about the exact algorithms, i.e. the ones succeed with
certainty. Under the standard oracle model , we demonstrate a tight lower bound of the number of queries
for any parallel scheme with unentangled input states. With the assistance of
entanglement, we obtain a general lower bound . We provide
concrete examples to illustrate our results. In particular, we show that the
case of N=6 can be solved exactly with only two queries by using a bipartite
entangled input state. Our results indicate that in the standard oracle model
the complexity of exact quantum search with one unique solution can be strictly
less than that of the calculation of OR function.Comment: 8 pages (revtex4), 6 figures. Revised version with some typo error
corrections and some clearer statement. Accepted by Phys.Rev.A .Comments are
welcome
High-Pressure Induced Structural Phase Transition in CaCrO4: Evidence from Raman Scattering Studies
Raman spectroscopic studies have been carried out on CaCrO4 under pressure up
to 26GPa at ambient temperature. The Raman spectra showed CaCrO4 experienced a
continuous structural phase transition started at near 6GPa, and finished at
about 10GPa. It is found that the high-pressure phase could be quenched to
ambient conditions. Pressure dependence of the Raman peaks suggested there
existed four pressure regions related to different structural characters. We
discussed these characters and inferred that the nonreversible structural
transition in CaCrO4, most likely was from a zircon-type (I41/amd) ambient
phase to a scheelite-type high pressure structure (I41/a).Comment: submitte
- …