9,350 research outputs found

    The Workflow of Data Analysis Using Stata

    Get PDF
    The Workflow of Data Analysis Using Stata, by J. Scott Long, is a productivity tool for data analysts. Long guides you toward streamlining your workflow, because a good workflow is essential for replicating your work, and replication is essential for good science. A workflow of data analysis is a process for managing all aspects of data analysis. Planning, documenting, and organizing your work; cleaning the data; creating, renaming, and verifying variables; performing and presenting statistical analyses; producing replicable results; and archiving what you have done are all integral parts of your workflow. Long shows how to design and implement efficient workflows for both one-person projects and team projects.Stata, data management, workflow

    Reproducible Results and the Workflow of Data Analysis

    Get PDF
    Dr. Long is Distinguished Professor and Chancellor’s Professor of Sociology and Statistics at Indiana University.Many disciplines are paying increasing attention to "reproducible results". This is the idea other scientists should have access to your data so that they can reproduce the results from your published work. Producing reproducible results is critically important and highly dependent on your workflow of data analysis. This workflow encompasses the entire process of scientific research: Planning, documenting, and organizing your work; creating, labeling, naming, and verifying variables; performing and presenting statistical analyses; preserving your work; and (perhaps, most important) producing replicable results. Most of our work in statistics classes focuses on estimating and interpreting models. In most “real world” research projects, these activities involve less than 10% of the total work. Professor Long’s talk is about the other 90% of the work. An efficient workflow saves time, introduces greater reliability into the steps of the analysis, and generates reproducible results

    Adhesion, Stiffness and Instability in Atomically Thin MoS2 Bubbles

    Full text link
    We measured the work of separation of single and few-layer MoS2 membranes from a SiOx substrate using a mechanical blister test, and found a value of 220 +- 35 mJ/m^2. Our measurements were also used to determine the 2D Young's modulus of a single MoS2 layer to be 160 +- 40 N/m. We then studied the delamination mechanics of pressurized MoS2 bubles, demonstrating both stable and unstable transitions between the bubbles' laminated and delaminated states as the bubbles were inflated. When they were deflated, we observed edge pinning and a snap-in transition which are not accounted for by the previously reported models. We attribute this result to adhesion hysteresis and use our results to estimate the work of adhesion of our membranes to be 42 +- 20 mJ/m^2

    Integrated genomic approaches identify major pathways and upstream regulators in late onset Alzheimer's disease.

    Get PDF
    Previous studies have evaluated gene expression in Alzheimer's disease (AD) brains to identify mechanistic processes, but have been limited by the size of the datasets studied. Here we have implemented a novel meta-analysis approach to identify differentially expressed genes (DEGs) in published datasets comprising 450 late onset AD (LOAD) brains and 212 controls. We found 3124 DEGs, many of which were highly correlated with Braak stage and cerebral atrophy. Pathway Analysis revealed the most perturbed pathways to be (a) nitric oxide and reactive oxygen species in macrophages (NOROS), (b) NFkB and (c) mitochondrial dysfunction. NOROS was also up-regulated, and mitochondrial dysfunction down-regulated, in healthy ageing subjects. Upstream regulator analysis predicted the TLR4 ligands, STAT3 and NFKBIA, for activated pathways and RICTOR for mitochondrial genes. Protein-protein interaction network analysis emphasised the role of NFKB; identified a key interaction of CLU with complement; and linked TYROBP, TREM2 and DOK3 to modulation of LPS signalling through TLR4 and to phosphatidylinositol metabolism. We suggest that NEUROD6, ZCCHC17, PPEF1 and MANBAL are potentially implicated in LOAD, with predicted links to calcium signalling and protein mannosylation. Our study demonstrates a highly injurious combination of TLR4-mediated NFKB signalling, NOROS inflammatory pathway activation, and mitochondrial dysfunction in LOAD

    Ehrlichia Prevalence in Amblyomma americanum, Central Texas

    Get PDF

    Survey of sediment quality in Sabine Lake, Texas and vicinity

    Get PDF
    The toxicity of sediments in Sabine Lake, Texas, and adjoining Intracoastal Waterway canals was determined as part of bioeffects assessment studies managed by NOAA’s National Status and Trends Program. The objectives of the survey were to determine: (1) the incidence and degree of toxicity of sediments throughout the study area; (2) the spatial patterns (or gradients) in chemical contamination and toxicity, if any, throughout the study area; (3) the spatial extent of chemical contamination and toxicity; and (4) the statistical relationships between measures of toxicity and concentrations of chemicals in the sediments. Surficial sediment samples were collected during August, 1995 from 66 randomly-chosen locations. Laboratory toxicity tests were performed as indicators of potential ecotoxicological effects in sediments. A battery of tests was performed to generate information from different phases (components) of the sediments. Tests were selected to represent a range in toxicological endpoints from acute to chronic sublethal responses. Toxicological tests were conducted to measure: reduced survival of adult amphipods exposed to solid-phase sediments; impaired fertilization success and abnormal morphological development in gametes and embryos, respectively, of sea urchins exposed to pore waters; reduced metabolic activity of a marine bioluminescent bacteria exposed to organic solvent extracts; and induction of a cytochrome P-450 reporter gene system in exposures to solvent extracts of the sediments. Chemical analyses were performed on portions of each sample to quantify the concentrations of trace metals, polynuclear aromatic hydrocarbons, and chlorinated organic compounds. Correlation analyses were conducted to determine the relationships between measures of toxicity and concentrations of potentially toxic substances in the samples. Based upon the compilation of results from chemical analyses and toxicity tests, the quality of sediments in Sabine Lake and vicinity did not appear to be severely degraded. Chemical concentrations rarely exceeded effects-based numerical guidelines, suggesting that toxicant-induced effects would not be expected in most areas. None of the samples was highly toxic in acute amphipod survival tests and a minority (23%) of samples were highly toxic in sublethal urchin fertilization tests. Although toxic responses occurred frequently (94% of samples) in urchin embryo development tests performed with 100% pore waters, toxicity diminished markedly in tests done with diluted pore waters. Microbial bioluminescent activity was not reduced to a great degree (no EC50 <0.06 mg/ml) and cytochrome P-450 activity was not highly induced (6 samples exceeded 37.1 ug/g benzo[a]pyrene equivalents) in tests done with organic solvent extracts. Urchin embryological development was highly correlated with concentrations of ammonia and many trace metals. Cytochrome P450 induction was highly correlated with concentrations of a number of classes of organic compounds (including the polynuclear aromatic hydrocarbons and chlorinated compounds). (PDF contains 51 pages

    Genome-wide nucleosome mapping of Plasmodium falciparum reveals histone-rich coding and histone-poor intergenic regions and chromatin remodeling of core and subtelomeric genes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Epigenetic modifications of histones and regulation of chromatin structure have been implicated in regulation of virulence gene families in <it>P. falciparum</it>. To better understand chromatin-mediated gene regulation, we used a high-density oligonucleotide microarray to map the position and enrichment of nucleosomes across the entire genome of <it>P. falciparum </it>at three time points of the intra-erythrocytic developmental cycle (IDC) in vitro. We used an unmodified histone H4 antibody for chromatin immunoprecipitation of nucleosome-bound DNA.</p> <p>Results</p> <p>We observed generally low nucleosomal occupancy of intergenic regions and higher occupancy of protein coding regions. In contract to the overall small fluctuation of nucleosomal occupancy in most coding regions throughout the IDC, subtelomeric genes encoding surface proteins such as <it>var </it>and <it>rif</it>, as well as some core chromosomal genes such as transcription factors, showed large changes in chromatin structure. Telomeres harbored a region with the highest nucleosomal occupancy of the genome and also exhibited large changes with higher nucleosomal occupancy at schizont stages. While many of these subtelomeric genes were previously shown to be modified by H3K9 trimethylation, we also identified some housekeeping genes in core chromosome regions that showed extensive changes in chromatin structure but do not contain this modification. tRNA and basal transcription factor genes showed low nucleosomal occupancy at all times, suggesting of an open chromatin structure that might be permissive for constitutively high levels of expression. Generally, nucleosomal occupancy was not correlated with the steady-state mRNA levels. Several <it>var </it>genes were exceptions: the <it>var </it>gene with the highest expression level showed the lowest nucleosomal occupancy, and selection of parasites for <it>var2CSA </it>expression resulted in lower nucleosomal occupancy at the <it>var2CSA </it>locus. We identified nucleosome-free regions in intergenic regions that may serve as transcription start sites or transcription factor binding sites. Using the nucleosomal occupancy data as the baseline, we further mapped the genome-wide enrichment of H3K9 acetylation and detected general enrichment of this mark in intergenic regions.</p> <p>Conclusions</p> <p>These data on nucleosome enrichment changes add to our understanding of the influence of chromatin structure on the regulation of gene expression. Histones are generally enriched in coding regions, and relatively poor in intergenic regions. Histone enrichment patterns allow for identification of new putative gene-coding regions. Most genes do not show correlation between chromatin structure and steady-state mRNA levels, indicating the dominant roles of other regulatory mechanisms. We present a genome-wide nucleosomal occupancy map, which can be used as a reference for future experiments of histone modification mapping.</p

    Under the influence of genetics: how transdisciplinarity leads us to rethink social pathways to illness

    Get PDF
    This article describes both sociological and genetic theories of illness causation and derives propositions expected under each and under a transdisciplinary theoretical frame. The authors draw propositions from three theories -- fundamental causes, social stress processes, and social safety net theories -- and tailor hypotheses to the case of alcohol dependence. Analyses of a later wave of the Collaborative Study on the Genetics of Alcoholism reveal a complex interplay of the GABRA2 gene with social structural factors to produce cases meeting DSM/ICD diagnoses. Only modest evidence suggests that genetic influence works through social conditions and experiences. Further, women are largely unaffected in their risk for alcohol dependence by allele status at this candidate gene; family support attenuates genetic influence; and childhood deprivation exacerbates genetic predispositions. These findings highlight the essential intradisciplinary tension in the role of proximal and distal influences in social processes and point to the promise of focusing directly on dynamic, networked sequences that produce different pathways to health and illness
    • …
    corecore