2,656 research outputs found
Resistance status of the carmine spider mite, Tetranychus cinnabarinus and the twospotted spider mite, Tetranychus urticae to selected acaricides on strawberries.
The carmine spider mite, Tetranychus cinnabarinus (Boisduval) and the twospotted spider mite, Tetranychus urticae Koch, are serious pests of strawberries and many other horticultural crops. Control of these pests has been heavily dependent upon chemical acaricides. Objectives of this study were to determine the resistance status of these two pest species to commonly used acaricides on strawberries in a year-round intensive horticultural production region. LC90 of abamectin for adult carmine spider mites was 4% whereas that for adult twospotted spider mites was 24% of the top label rate. LC90s of spiromesifen, etoxazole, hexythiazox and bifenazate were 0.5%, 0.5%, 1.4% and 83% of their respective highest label rates for carmine spider mite eggs, 0.7%, 2.7%, 12.1% and 347% of their respective highest label rates for the nymphs. LC90s of spiromesifen, etoxazole, hexythiazox and bifenazate were 4.6%, 11.1%, 310% and 62% of their respective highest label rates for twospotted spider mite eggs, 3%, 13%, 432,214% and 15% of their respective highest label rates for the nymphs. Our results suggest that T. cinnabarinus have developed resistance to bifenazate and that the T. urticae have developed resistance to hexythiazox. These results strongly emphasize the need to develop resistance management strategies in the region
Gaming Global
The Gaming Global report explores the games environment in:
five EU countries,
• Finland
• France
• Germany
• Poland
• UK
three non-EU countries,
• Brazil
• Russia
• Republic of Korea
and one non-European region.
• East Asia
It takes a culturally-focused approach, offers examples of innovative work, and makes the case for British Council’s engagement with the games sector, both as an entertainment and leisure sector, and as a culturally-productive contributor to the arts
The Impact of Accretion Disk Winds on the Optical Spectra of Cataclysmic Variables
Many high-state non-magnetic cataclysmic variables (CVs) exhibit blue-shifted
absorption or P-Cygni profiles associated with ultraviolet (UV) resonance
lines. These features imply the existence of powerful accretion disk winds in
CVs. Here, we use our Monte Carlo ionization and radiative transfer code to
investigate whether disk wind models that produce realistic UV line profiles
are also likely to generate observationally significant recombination line and
continuum emission in the optical waveband. We also test whether outflows may
be responsible for the single-peaked emission line profiles often seen in
high-state CVs and for the weakness of the Balmer absorption edge (relative to
simple models of optically thick accretion disks). We find that a standard disk
wind model that is successful in reproducing the UV spectra of CVs also leaves
a noticeable imprint on the optical spectrum, particularly for systems viewed
at high inclination. The strongest optical wind-formed recombination lines are
H and He II . We demonstrate that a higher-density outflow
model produces all the expected H and He lines and produces a recombination
continuum that can fill in the Balmer jump at high inclinations. This model
displays reasonable verisimilitude with the optical spectrum of RW Trianguli.
No single-peaked emission is seen, although we observe a narrowing of the
double-peaked emission lines from the base of the wind. Finally, we show that
even denser models can produce a single-peaked H line. On the basis of
our results, we suggest that winds can modify, and perhaps even dominate, the
line and continuum emission from CVs.Comment: 15 pages, 13 figures. Accepted to MNRA
Line-driven Disk Winds in Active Galactic Nuclei: The Critical Importance of Ionization and Radiative Transfer
Accretion disk winds are thought to produce many of the characteristic
features seen in the spectra of active galactic nuclei (AGN) and quasi-stellar
objects (QSOs). These outflows also represent a natural form of feedback
between the central supermassive black hole and its host galaxy. The mechanism
for driving this mass loss remains unknown, although radiation pressure
mediated by spectral lines is a leading candidate. Here, we calculate the
ionization state of, and emergent spectra for, the hydrodynamic simulation of a
line-driven disk wind previously presented by Proga & Kallman (2004). To
achieve this, we carry out a comprehensive Monte Carlo simulation of the
radiative transfer through, and energy exchange within, the predicted outflow.
We find that the wind is much more ionized than originally estimated. This is
in part because it is much more difficult to shield any wind regions
effectively when the outflow itself is allowed to reprocess and redirect
ionizing photons. As a result, the calculated spectrum that would be observed
from this particular outflow solution would not contain the ultraviolet
spectral lines that are observed in many AGN/QSOs. Furthermore, the wind is so
highly ionized that line-driving would not actually be efficient. This does not
necessarily mean that line-driven winds are not viable. However, our work does
illustrate that in order to arrive at a self-consistent model of line-driven
disk winds in AGN/QSO, it will be critical to include a more detailed treatment
of radiative transfer and ionization in the next generation of hydrodynamic
simulations.Comment: 13 pages, 10 figures - Accepted for publication in Ap
Exploiting No-Regret Algorithms in System Design
We investigate a repeated two-player zero-sum game setting where the column
player is also a designer of the system, and has full control on the design of
the payoff matrix. In addition, the row player uses a no-regret algorithm to
efficiently learn how to adapt their strategy to the column player's behaviour
over time in order to achieve good total payoff. The goal of the column player
is to guide her opponent to pick a mixed strategy which is favourable for the
system designer. Therefore, she needs to: (i) design an appropriate payoff
matrix whose unique minimax solution contains the desired mixed strategy of
the row player; and (ii) strategically interact with the row player during a
sequence of plays in order to guide her opponent to converge to that desired
behaviour. To design such a payoff matrix, we propose a novel solution that
provably has a unique minimax solution with the desired behaviour. We also
investigate a relaxation of this problem where uniqueness is not required, but
all the minimax solutions have the same mixed strategy for the row player.
Finally, we propose a new game playing algorithm for the system designer and
prove that it can guide the row player, who may play a \emph{stable} no-regret
algorithm, to converge to a minimax solution
Pharmaceutical pollution in marine waters and benthic flora of the southern Australian coastline
Environmental context Most human pharmaceutical waste is discharged to the environment. While the presence of pharmaceuticals in freshwater systems is well documented globally, little is known of the impact on marine ecosystems. We measured pharmaceuticals in a marine environment in south-eastern Australia and found pharmaceutical concentrations around 24Â 000 times higher in benthic flora than in the marine surface waters. We discuss the potential use of seaweeds as biological indicators of pharmaceutical pollution. Rationale Pharmaceuticals are emerging pollutants of concern with a range of adverse consequences for organisms and ecosystems. Their presence in freshwater and estuarine systems has been well documented, but less is known about their prevalence in open ocean, or their uptake by benthic flora. This preliminary survey of the southern Australian coastline sought to measure the concentrations of key pharmaceuticals in both surface waters and benthic flora. Methodology This study used LC-MS/MS to measure the concentration carbamazepine, tramadol and venlafaxine in (1) samples from wastewater treatment plants, (2) ocean surface waters and (3) several species of benthic flora. Surface waters and benthic flora were sampled at two sites near waste water treatment plant (WWTP) discharges, and one site away from any discharge. Results All three pharmaceuticals were detected in surface water samples with their risk assessed (via risk quotient) as medium risk (carbamazepine) or low risk (venlafaxine, tramadol). All three pharmaceuticals were also detected in benthic flora, particularly in brown macroalgae Tramadol was measured at a maximum of 34.7Â ngÂ
Remotely sensed dune celerity and sand flux measurements of the world's fastest barchans (Bodele, Chad)
Quantifying sand flux with field measurements is an expensive and time-consuming process. We here present an alternative approach using the COSI-Corr software package for Earth surface deformation detection. Using pairs of ASTER satellite images, we detected dune migration in the Bodélé depression of northern Chad over time intervals of one month to 6.5 years. The displacement map can be used to automatically distinguish dunes from interdunes, which is a crucial step towards calculating sand flux. We interpolated a surface between the interdune areas and subtracted it from a digital elevation model, thus obtaining dune heights and volumes. Multiplying height with celerity yields a pixel-by-pixel estimate of the sand flux. We applied this method to large diatomite dunes in the Bodélé, confirming that these are some of the world's fastest moving barchans. Plotting dune height against inverse celerity reveals sand flux at the dune crest of >200 m3/m/yr. Average dune sand flux values for the eastern and western Bodélé are 76 and 99 m3/m/yr, respectively. The contribution of the dunes to the total area-averaged sand flux is 24–29 m3/m/yr, which is ∼10% of the saltation flux determined by previously published field measurements
Analysis of N-nitrosamines in water by isotope dilution gas chromatography-electron ionisation tandem mass spectrometry
A method has been developed for the determination of eight N-nitrosamines in drinking water and treated municipal effluent. The method uses solid phase extraction (SPE), gas chromatography (GC) and analysis by tandem mass spectrometry (MS-MS) with electron ionization (EI). The target compounds are N-nitrosodimethylamine (NDMA), N-nitrosomethyethylamine (NMEA), N-nitrosodiethylamine NDEA), N-nitrosodipropylamine (NDPA), N-nitrosodi-n-butylamine (NDBuA), N-nitrosodiphenylamine (NDPhA), N-nitrosopyrrolidine (NPyr), N-nitrosopiperidine (NPip), N-nitrosomorpholine (NMorph). The use of direct isotope analogues for isotope dilution analysis of all analytes ensures accurate quantification, accounting for analytical variabilities that may occur during sample processing, extraction and instrumental analysis. Method detection levels (MDLs) were determined to describe analyte concentrations sufficient to provide a signal with 99% certainty of detection. The established MDLs for all analytes were 0.4–4 ng L−1 in a variety of aqueous matrices. Sample matrices were observed to have only a minor impact on MDLs and the method validation confirmed satisfactory method stability over intra-day and inter-day analyses of tap water and tertiary treated effluent sample
- …