43 research outputs found

    Quantification of the value of monitoring information for deteriorated structures

    Get PDF

    Quantification of the conditional value of SHM data for the fatigue safety evaluation of a road viaduct

    Get PDF

    Determination of structural and damage detection system influencing parameters on the value of information

    Get PDF
    International audienceA method to determine the influencing parameters of a structural and Damage Detection System (DDS) is proposed based on the Value of Information (VoI) analysis. The VoI analysis utilizes the Bayesian pre-posterior decision theory to quantify the value of DDS for the structural integrity management during service life. First the influencing parameters of the structural system, such as deterioration type and rate are introduced for the performance of the prior probabilistic system model. Then the influencing parameters on the DDS performance, including number of sensors, sensor locations, measurement noise and the Type I error are investigated. The pre-posterior probabilistic model is computed utilizing the Bayes' theorem to update the prior system model with the damage indication information. Finally, the value of DDS is quantified as the difference between the maximum utility obtained in pre-posterior and prior analysis based on the decision tree analysis, comprising structural probabilistic models, consequences, as well as benefit and costs analysis associated with and without monitoring. With the developed approach, a case study on a statically determinate Pratt truss bridge girder is carried out to validate the method. The analysis shows that the deterioration rate is the most sensitive parameter on the effect of relative VoI over the whole service life. Furthermore, it shows that more sensors do not necessarily lead to a higher relative VoI; only specific sensor locations near the highest utilized components lead to a high relative VoI; measurement noise and the Type I error should be controlled and be as small as possible. An optimal sensor employment with highest relative VoI is found. Moreover, it is found that the proposed method can be a powerful tool to develop optimal service life maintenance strategies-before implementation-for similar bridges and to optimize the DDS settings and sensor configuration for minimum expected costs and risks

    On damage detection system information for structural systems

    Get PDF
    International audienceDamage detection systems (DDS) provide information of the structural system integrity in contrast to e.g. local information by inspections or non-destructive testing techniques. In this paper, an approach is developed and demonstrated to utilize DDS information to update the structural system reliability and to integrate this information in structural system risk and utility analyses. For this aim, a novel performance modelling of DDS building upon their system characteristics and non-destructive testing reliability is introduced. The DDS performance modelling accounts for a measurement system in combination with a damage detection algorithm attached to a structural system in the reference and damage states and is modelled with the probability of indication accounting for type I and II errors. In this way, the basis for DDS performance comparison and assessment is provided accounting for the dependencies between the damage states in a structure. For updating of the structural system reliability, an approach is developed based on Bayesian updating facilitating the use of DDS information on structural system level and thus for a structural system risk analysis. The structural system risk analysis encompasses the static, dynamic, deterioration, reliability and consequence models, which provide the basis for the system model for calculating the direct risks due to component failure and the indirect risks due to system failure. Two case studies with the developed approach demonstrate a high Value of DDS Information due to risk and expected cost reduction

    Quantification of the conditional value of SHM data for the fatigue safety evaluation of a road viaduct

    Get PDF
    Fatigue safety verification of existing bridges that uses re-calculation based on codes, usually results in insufficient fatigue safety, triggering invasive interventions. Instead of re-calculation, Structural Health Monitoring (SHM) should be used for the assessment of the existing bridges. Monitoring systems provide data that can reduce uncertainties associated with the fatigue loading process and the structural resistance. The objective of this paper is to quantify the value of the SHM system implemented in a 60-years-old road viaduct to investigate its fatigue safety, through modeling of the fundamental decisions of performing monitoring in conjunction with its expected utility. The quantification of the conditional value of information is based on the decision tree analysis that considers the structural reliability, various decision scenarios as well as the cost-benefit assessments. This leads to a quantitative decision basis for the owner about how much time and money can be saved while the viaduct fulfills its function reliably and respects the safety requirements. The originality of this paper stands in the application of the value of information theory to an existing viaduct considering the fatigue failure of the system based on the monitoring data and the cost-benefit of monitoring method.This research work was performed within the European project INFRASTAR (infrastar.eu), which has received funding from the European Unions Horizon 2020 research and innovation program under the Marie SkƂodowska-Curie grant agreement No 676139. The grant is gratefully acknowledged

    Quantification of the conditional value of SHM data for the fatigue safety evaluation of a road viaduct

    Get PDF
    Fatigue safety verification of existing bridges that uses ‘‘re-calculation’’ based on codes, usually results in insufficient fatigue safety, triggering invasive interventions. Instead of “re-calculation”, Structural Health Monitoring (SHM) should be used for the assessment of the existing bridges. Monitoring systems provide data that can reduce uncertainties associated with the fatigue loading process and the structural resistance. The objective of this paper is to quantify the value of the SHM system implemented in a 60-years-old road viaduct to investigate its fatigue safety, through modeling of the fundamental decisions of performing monitoring in conjunction with its expected utility. The quantification of the conditional value of information is based on the decision tree analysis that considers the structural reliability, various decision scenarios as well as the cost-benefit assessments. This leads to a quantitative decision basis for the owner about how much time and money can be saved while the viaduct fulfills its function reliably and respects the safety requirements. The originality of this paper stands in the application of the value of information theory to an existing viaduct considering the fatigue failure of the system based on the monitoring data and the cost-benefit of monitoring method

    Risk Assessment and Value of Action Analysis for Icing Conditions of Wind Turbines Close to Highways

    Get PDF
    The paper presents research results from the Marie SkƂodowska-Curie Innovative Training Network INFRASTAR in the field of reliability approaches for decision-making for wind turbines and bridges. This paper addresses the application of Bayesian decision analysis for installation of heating systems in wind turbine blades in cases where an ice detection system is already installed in order to allow wind turbines to be placed close to highways. Generally, application of ice detection and heating systems for wind turbines is very relevant in cases where the wind turbines are planned to be placed close to urban areas and highways, where risks need to be considered due to icing events, which may lead to consequences including human fatality, functional disruptions, and/or economic losses. The risk of people being killed in a car passing on highways near a wind turbine due to blades parts or ice pieces being thrown away in cases of over-icing is considered in this paper. The probability of being killed per kilometer and per year is considered for three cases: blade parts thrown away as a result of a partial or total failure of a blade, ice thrown away in two cases, i.e., of stopped wind turbines and of wind turbines in operation. Risks due to blade parts being thrown away cannot be avoided, since low strengths of material, maintenance or manufacturing errors, mechanical or electrical failures may result in failure of a blade or blade part. The blade (parts) thrown away from wind turbines in operation imply possible consequences/fatalities for people near the wind turbines, including in areas close to highways. Similar consequences are relevant for ice being thrown away from wind turbine blades during icing situations. In this paper, we examine the question as to whether it is valuable to put a heating system on the blades in addition to ice detection systems. This is especially interesting in countries with limited space for placing wind turbines; in addition, it is considered if higher power production can be obtained due to less downtime if a heating system is installed
    corecore