3,239 research outputs found
Choice-dependent Perceptual Biases
The perceived motion direction of a dynamic random dot stimulus is systematically biased when preceded by a motion discrimination task (Jazayeri and Movshon, 2007). The biases were originally thought to occur because subjects mistakenly reuse the neural read-out optimized for the discrimination task when forming the percept (Fig.1a, Task-dependent model). In a series of experiments, we demonstrated that this explanation is incorrect and that the biases actually result from the conditioning of the percept on the preceding discrimination judgment (Fig1.b, Choice-dependent model). Experiment 1 was aimed at replicating the biases for an orientation stimulus. Subjects first indicated whether the stimulus orientation was clockwise (CW) or counter-clockwise (CCW) of a randomly chosen reference orientation. Subsequently they had to reproduce the stimulus orientation (Fig1.c). Experiment 2 was identical to Experiment 1 except that the total range of the stimulus were shown at the beginning of each trial. Experiment 3 was identical to Experiment 2 except that subjects were given the correct answer of the discrimination judgment (CW/CCW) and they instead performed an irrelevant decision task. Subjectsâ estimates were systematically biased away from the decision boundary in Exp. 1(Fig.1 c). Similar biases occurred in Exp. 2 and 3. Because the task-dependent model is insensitive to the stimulus range and is contingent on subjects performing a discrimination, it cannot capture the shift of bias curves in Exp. 2 and in Exp. 3. In contrast, the choice-dependent model predicts all those features in the data assuming that subjects learned the narrower prior range and conditioned their percepts on the given decision outcome
Redox-mediated reactions of vinylferrocene: Toward redox auxiliaries
Chemical redox reactions have been exploited to transform unreactive vinylferrocene into a powerful dienophile for the DielsâAlder reaction and reactive substrate for thiol addition reactions upon conversion to its ferrocenium state. We have further investigated the ability of these reactions to facilitate redox-auxiliary-like reactivity by further hydrogenolyisis of the DielsâAlder adduct to the corresponding cyclopentane derivative
Experimental evidence that shear bands in metallic glasses nucleate like cracks
Highly time-resolved mechanical measurements, modeling, and simulations show that large shear bands in bulk metallic glasses nucleate in a manner similar to cracks. When small slips reach a nucleation size, the dynamics changes and the shear band rapidly grows to span the entire sample. Smaller nucleation sizes imply lower ductility. Ductility can be increased by increasing the nucleation size relative to the maximum (âcutoffâ) shear band size at the upper edge of the power law scaling range of their size distribution. This can be achieved in three ways: (1) by increasing the nucleation size beyond this cutoff size of the shear bands, (2) by keeping all shear bands smaller than the nucleation size, or (3) by choosing a sample size smaller than the nucleation size. The discussed methods can also be used to rapidly order metallic glasses according to ductility
Experimental characterization of a 400ââGbit/s orbital angular momentum multiplexed free-space optical link over 120 m
We experimentally demonstrate and characterize the
performance of a 400-Gbit/s orbital angular momentum
(OAM) multiplexed free-space optical link over 120-
meters on the roof of a building. Four OAM beams, each
carrying a 100-Gbit/s QPSK channel are multiplexed and
transmitted. We investigate the influence of channel
impairments on the received power, inter-modal
crosstalk among channels, and system power penalties.
Without laser tracking and compensation systems, the
measured received power and crosstalk among OAM
channels fluctuate by 4.5 dB and 5 dB, respectively, over
180 seconds. For a beam displacement of 2 mm that
corresponds to a pointing error less than 16.7 Îźrad, the
link bit-error-rates are below the forward error
correction threshold of 3.8Ă10-3 for all channels. Both
experimental and simulation results show that power
penalties increase rapidly when the displacement
increases
Human embryonic myosin heavy chain cDNA Interspecies sequence conservation of the myosin rod, chromosomal locus and isoform specific transcription of the gene
AbstractA 3.6 kilobase cDNA clone coding for the human embryonic myosin heavy chain has been isolated and characterized from an expression library prepared from human fetal skeletal muscle. The derived amino acid sequence for the entire rod part of myosin shows 97% sequence homology between human and rat and a striking interspecies sequence conservation among the charged amino acid residues. The single copy gene is localized to human chromosome 17 and its expression in fetal skeletal muscle is developmentally regulated. The sequence information permits the design of isoform-specific probes for studies on the structure of the gene and its role in normal and defective human myogenesis.Myosin heavy chain cDNA; Nucleotide sequence; Amino acid sequence; Myosin rod; Chromosomal mapping; Gene transcription; (Human embryo
The Sloan Digital Sky Survey Quasar Catalog I. Early Data Release
We present the first edition of the Sloan Digital Sky Survey (SDSS) Quasar
Catalog. The catalog consists of the 3814 objects (3000 discovered by the SDSS)
in the initial SDSS public data release that have at least one emission line
with a full width at half maximum larger than 1000 km/s, luminosities brighter
than M_i^* = -23, and highly reliable redshifts. The area covered by the
catalog is 494 square degrees; the majority of the objects were found in SDSS
commissioning data using a multicolor selection technique. The quasar redshifts
range from 0.15 to 5.03. For each object the catalog presents positions
accurate to better than 0.2" rms per coordinate, five band (ugriz) CCD-based
photometry with typical accuracy of 0.05 mag, radio and X-ray emission
properties, and information on the morphology and selection method. Calibrated
spectra of all objects in the catalog, covering the wavelength region 3800 to
9200 Angstroms at a spectral resolution of 1800-2100, are also available. Since
the quasars were selected during the commissioning period, a time when the
quasar selection algorithm was undergoing frequent revisions, the sample is not
homogeneous and is not intended for statistical analysis.Comment: 27 pages, 4 figures, 4 tables, accepted by A
Disruption of the Opal Stop Codon Attenuates Chikungunya Virus-Induced Arthritis and Pathology
ABSTRACT Chikungunya virus (CHIKV) is a mosquito-borne alphavirus responsible for several significant outbreaks of debilitating acute and chronic arthritis and arthralgia over the past decade. These include a recent outbreak in the Caribbean islands and the Americas that caused more than 1 million cases of viral arthralgia. Despite the major impact of CHIKV on global health, viral determinants that promote CHIKV-induced disease are incompletely understood. Most CHIKV strains contain a conserved opal stop codon at the end of the viral nsP3 gene. However, CHIKV strains that encode an arginine codon in place of the opal stop codon have been described, and deep-sequencing analysis of a CHIKV isolate from the Caribbean identified both arginine and opal variants within this strain. Therefore, we hypothesized that the introduction of the arginine mutation in place of the opal termination codon may influence CHIKV virulence. We tested this by introducing the arginine mutation into a well-characterized infectious clone of a CHIKV strain from Sri Lanka and designated this virus Opal524R. This mutation did not impair viral replication kinetics in vitro or in vivo . Despite this, the Opal524R virus induced significantly less swelling, inflammation, and damage within the feet and ankles of infected mice. Further, we observed delayed induction of proinflammatory cytokines and chemokines, as well as reduced CD4 + T cell and NK cell recruitment compared to those in the parental strain. Therefore, the opal termination codon plays an important role in CHIKV pathogenesis, independently of effects on viral replication. IMPORTANCE Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that causes significant outbreaks of viral arthralgia. Studies with CHIKV and other alphaviruses demonstrated that the opal termination codon within nsP3 is highly conserved. However, some strains of CHIKV and other alphaviruses contain mutations in the opal termination codon. These mutations alter the virulence of related alphaviruses in mammalian and mosquito hosts. Here, we report that a clinical isolate of a CHIKV strain from the recent outbreak in the Caribbean islands contains a mixture of viruses encoding either the opal termination codon or an arginine mutation. Mutating the opal stop codon to an arginine residue attenuates CHIKV-induced disease in a mouse model. Compared to infection with the opal-containing parental virus, infection with the arginine mutant causes limited swelling and inflammation, as well as dampened recruitment of immune mediators of pathology, including CD4 + T cells and NK cells. We propose that the opal termination codon plays an essential role in the induction of severe CHIKV disease
Colors of 2625 Quasars at 0<z<5 Measured in the Sloan Digital Sky Survey Photometric System
We present an empirical investigation of the colors of quasars in the Sloan
Digital Sky Survey (SDSS) photometric system. The sample studied includes 2625
quasars with SDSS photometry. The quasars are distributed in a 2.5 degree wide
stripe centered on the Celestial Equator covering square degrees.
Positions and SDSS magnitudes are given for the 898 quasars known prior to SDSS
spectroscopic commissioning. New SDSS quasars represent an increase of over
200% in the number of known quasars in this area of the sky. The ensemble
average of the observed colors of quasars in the SDSS passbands are well
represented by a power-law continuum with (). However, the contributions of the bump
and other strong emission lines have a significant effect upon the colors. The
color-redshift relation exhibits considerable structure, which may be of use in
determining photometric redshifts for quasars. The range of colors can be
accounted for by a range in the optical spectral index with a distribution
(95% confidence), but there is a red tail in the
distribution. This tail may be a sign of internal reddening. Finally, we show
that there is a continuum of properties between quasars and Seyfert galaxies
and we test the validity of the traditional division between the two classes of
AGN.Comment: 66 pages, 15 figures (3 color), accepted by A
The Milky Way Tomography With SDSS. III. Stellar Kinematics
We study Milky Way kinematics using a sample of 18.8 million main-sequence stars with r 20 degrees). We find that in the region defined by 1 kpc < Z < 5 kpc and 3 kpc < R < 13 kpc, the rotational velocity for disk stars smoothly decreases, and all three components of the velocity dispersion increase, with distance from the Galactic plane. In contrast, the velocity ellipsoid for halo stars is aligned with a spherical coordinate system and appears to be spatially invariant within the probed volume. The velocity distribution of nearby (Z < 1 kpc) K/M stars is complex, and cannot be described by a standard Schwarzschild ellipsoid. For stars in a distance-limited subsample of stars (< 100 pc), we detect a multi-modal velocity distribution consistent with that seen by HIPPARCOS. This strong non-Gaussianity significantly affects the measurements of the velocity-ellipsoid tilt and vertex deviation when using the Schwarzschild approximation. We develop and test a simple descriptive model for the overall kinematic behavior that captures these features over most of the probed volume, and can be used to search for substructure in kinematic and metallicity space. We use this model to predict further improvements in kinematic mapping of the Galaxy expected from Gaia and the Large Synoptic Survey Telescope.NSF AST-615991, AST-0707901, AST-0551161, AST-02-38683, AST-06-07634, AST-0807444, PHY05-51164NASA NAG5-13057, NAG5-13147, NNXO-8AH83GPhysics Frontier Center/Joint Institute for Nuclear Astrophysics (JINA) PHY 08-22648U.S. National Science FoundationMarie Curie Research Training Network ELSA (European Leadership in Space Astrometry) MRTN-CT-2006-033481Fermi Research Alliance, LLC, United States Department of Energy DE-AC02-07CH11359Alfred P. Sloan FoundationParticipating InstitutionsJapanese MonbukagakushoMax Planck SocietyHigher Education Funding Council for EnglandMcDonald Observator
Neutralising antibodies block the function of Rh5/Ripr/CyRPA complex during invasion of <i>Plasmodium falciparum</i> into human erythrocytes
An effective vaccine is a priority for malaria control and elimination. The leading candidate in the Plasmodium falciparum blood stage is PfRh5. PfRh5 assembles into trimeric complex with PfRipr and PfCyRPA in the parasite, and this complex is essential for erythrocyte invasion. In this study, we show that antibodies specific for PfRh5 and PfCyRPA prevent trimeric complex formation. We identify the EGF-7 domain on PfRipr as a neutralising epitope and demonstrate that antibodies against this region act downstream of complex formation to prevent merozoite invasion. Antibodies against the C-terminal region of PfRipr were more inhibitory than those against either PfRh5 or PfCyRPA alone, and a combination of antibodies against PfCyRPA and PfRipr acted synergistically to reduce invasion. This study supports prioritisation of PfRipr for development as part of a next-generation antimalarial vaccine
- âŚ