91,033 research outputs found
Spectroscopic analysis of radiation-generated changes in tensile properties of a polyetherimide film
The effects of electron radiation on Ultem, a polyetherimide were studied for doses from 2 x 10 to the 9th power to 6 x 10 to the 9th power rad. Specimens were studied for tensile property testing and for electron paramagnetic resonance and infrared spectroscopic measurements of molecular structure. A Faraday cup design and a method for remote temperature measurement were developed. The spectroscopic data show that radiation caused dehydrogenation of methyl groups, rupture of main-chain ether linkage, and opening of imide rings, all to form radicals and indicate that the so-formed atomic hydrogen attached to phenyl radicals, but not to phenoxyl radicals, which would have formed hydroxyls. The observed decays of the radiation-generated phenoxyl, gem-dimethyl, and carbonyl radicals were interpreted as a combining of the radicals to form crosslinking. This crosslinking is the probable cause of the major reduction in the elongation of the tensile specimens after irradiation. Subsequent classical solubility tests indicate that the irradiation caused massive crosslinking
Effects of various experimental parameters on errors in triangulation solution of elongated object in space
The effects of various experimental parameters on the displacement errors in the triangulation solution of an elongated object in space due to pointing uncertainties in the lines of sight have been determined. These parameters were the number and location of observation stations, the object's location in latitude and longitude, and the spacing of the input data points on the azimuth-elevation image traces. The displacement errors due to uncertainties in the coordinates of a moving station have been determined as functions of the number and location of the stations. The effects of incorporating the input data from additional cameras at one of the stations were also investigated
Stochastic simulation of the influence of cure kinetics uncertainty on composites cure
A stochastic cure simulation methodology is developed and implemented to investigate the influence of cure kinetics uncertainty due to different initial resin state on the process of cure. The simulation addresses heat transfer effects and allows quantification of uncertainty in temperature overshoot during the cure. Differential Scanning Calorimetry was used to characterise cure kinetics variability of a commercial epoxy resin used in aerospace applications. It was found that cure kinetics uncertainty is associated with variations in the initial degree of cure, activation energy and reaction order. A cure simulation model was coupled with conventional Monte Carlo and an implementation of the Probabilistic Collocation Method. Both simulation schemes are capable of capturing variability propagation, with the collocation method presenting benefits in terms of computational cost against the Monte Carlo scheme with comparable accuracy. Simulation of the cure of a carbon fibre–epoxy panel shows that cure kinetics uncertainty can cause considerable variability in the process outcome with a coefficient of variation in temperature overshoot of about 30%
Uncertainty in the manufacturing of fibrous thermosetting composites: A review
Composites manufacturing involves many sources of uncertainty associated with material properties variation and boundary conditions variability. In this study, experimental and numerical results concerning the statistical characterization and the influence of inputs variability on the main steps of composites manufacturing including process-induced defects are presented and analysed. Each of the steps of composite manufacturing introduces variability to the subsequent processes, creating strong interdependencies between the process parameters and properties of the final part. The development and implementation of stochastic simulation tools is imperative to quantify process output variabilities and develop optimal process designs in composites manufacturing
Control of Arabidopsis apical-basal embryo polarity by antagonistic transcription factors.
Plants, similarly to animals, form polarized axes during embryogenesis on which cell differentiation and organ patterning programs are orchestrated. During Arabidopsis embryogenesis, establishment of the shoot and root stem cell populations occurs at opposite ends of an apical-basal axis. Recent work has identified the PLETHORA (PLT) genes as master regulators of basal/root fate, whereas the master regulators of apical/shoot fate have remained elusive. Here we show that the PLT1 and PLT2 genes are direct targets of the transcriptional co-repressor TOPLESS (TPL) and that PLT1/2 are necessary for the homeotic conversion of shoots to roots in tpl-1 mutants. Using tpl-1 as a genetic tool, we identify the CLASS III HOMEODOMAIN-LEUCINE ZIPPER (HD-ZIP III) transcription factors as master regulators of embryonic apical fate, and show they are sufficient to drive the conversion of the embryonic root pole into a second shoot pole. Furthermore, genetic and misexpression studies show an antagonistic relationship between the PLT and HD-ZIP III genes in specifying the root and shoot poles
The Quantum Interference Computer: an experimental proposal
An experiment is proposed to test the interference aspect of the Quantum
Interference Computer approachComment: 6 pages, 1 figur
- …